Skip to main content

Addressing Class Imbalance in Multilabel Prototype Generation for k-Nearest Neighbor Classification

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2023)

Abstract

Prototype Generation (PG) methods seek to improve the efficiency of the k-Nearest Neighbor (kNN) classifier by obtaining a reduced version of a given reference dataset following certain heuristics. Despite being largely addressed topic in multiclass scenarios, few works deal with PG in multilabel environments. Hence, the existing proposals exhibit a number of limitations, being label imbalance one of paramount relevance as it constitutes a typical challenge of multilabel datasets. This work proposes two novel merging policies for multilabel PG schemes specifically devised for label imbalance, as well as a mechanism to prevent inappropriate samples from undergoing a reduction process. These proposals are applied to three existing multilabel PG methods—Multilabel Reduction through Homogeneous Clustering, Multilabel Chen, and Multilabel Reduction through Space Partitioning—and evaluated on 12 different data assortments with different degrees of label imbalance. The results prove that the proposals overcome—in some cases in a significant manner—those obtained with the original methods, hence validating the presented approaches and enabling further research lines on this topic.

This work was supported by the I+D+i project TED2021-132103A-I00 (DOREMI), funded by MCIN/AEI/10.13039/501100011033.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An implementation of this experimental procedure together with the assessed methods are available in: https://github.com/jose-jvmas/imbalance-MPG_IbPRIA23.

References

  1. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning. Springer, Cham (2006)

    Google Scholar 

  2. Castellanos, F.J., Valero-Mas, J.J., Calvo-Zaragoza, J.: Prototype generation in the string space via approximate median for data reduction in nearest neighbor classification. Soft. Comput. 25(24), 15403–15415 (2021). https://doi.org/10.1007/s00500-021-06178-2

    Article  Google Scholar 

  3. Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: MLeNN: a first approach to heuristic multilabel undersampling. In: Proceedings of the 15th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), Salamanca, Spain, pp. 1–9 (2014)

    Google Scholar 

  4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Deng, Z., Zhu, X., Cheng, D., Zong, M., Zhang, S.: Efficient kNN classification algorithm for big data. Neurocomputing 195, 143–148 (2016)

    Article  Google Scholar 

  6. Duda, R.O., Hart, P.E., et al.: Pattern Classification. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  7. Escalante, H.J., Graff, M., Morales-Reyes, A.: PGGP: prototype generation via genetic programming. Appl. Soft Comput. 40, 569–580 (2016)

    Article  Google Scholar 

  8. García, S., Luengo, J., Herrera, F.: Data Preprocessing in Data Mining, vol. 72. Springer, Cham (2015)

    Google Scholar 

  9. Liu, B., Tsoumakas, G.: Dealing with class imbalance in classifier chains via random undersampling. Knowl.-Based Syst. 192, 105292 (2020)

    Article  Google Scholar 

  10. Mishra, N.K., Singh, P.K.: Feature construction and smote-based imbalance handling for multi-label learning. Inf. Sci. 563, 342–357 (2021)

    Article  MathSciNet  Google Scholar 

  11. Nanni, L., Lumini, A.: Prototype reduction techniques: a comparison among different approaches. Expert Syst. Appl. 38(9), 11820–11828 (2011)

    Article  Google Scholar 

  12. Ougiaroglou, S., Filippakis, P., Evangelidis, G.: Prototype generation for multi-label nearest neighbours classification. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds.) HAIS 2021. LNCS (LNAI), vol. 12886, pp. 172–183. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86271-8_15

    Chapter  Google Scholar 

  13. Tarekegn, A.N., Giacobini, M., Michalak, K.: A review of methods for imbalanced multi-label classification. Pattern Recogn. 118, 107965 (2021)

    Article  Google Scholar 

  14. Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: MULAN: a Java library for multi-label learning. J. Mach. Learn. Res. 12, 2411–2414 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Valero-Mas, J.J., Calvo-Zaragoza, J., Rico-Juan, J.R., Iñesta, J.M.: A study of prototype selection algorithms for nearest neighbour in class-imbalanced problems. In: Proceedings of the 8th Iberian Conference Pattern Recognition and Image Analysis (IbPRIA), Faro, Portugal, pp. 335–343 (2017)

    Google Scholar 

  16. Valero-Mas, J.J., Gallego, A.J., Alonso-Jiménez, P., Serra, X.: Multilabel prototype generation for data reduction in k-nearest neighbour classification. Pattern Recogn. 135, 109190 (2023)

    Article  Google Scholar 

  17. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose J. Valero-Mas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Penarrubia, C., Valero-Mas, J.J., Gallego, A.J., Calvo-Zaragoza, J. (2023). Addressing Class Imbalance in Multilabel Prototype Generation for k-Nearest Neighbor Classification. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36616-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36615-4

  • Online ISBN: 978-3-031-36616-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics