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Abstract. Multimodal imaging and correlative analysis typically re-
quire image alignment. Contrastive learning can generate representations
of multimodal images, reducing the challenging task of multimodal im-
age registration to a monomodal one. Previously, additional supervision
on intermediate layers in contrastive learning has improved biomedical
image classification. We evaluate if a similar approach improves repre-
sentations learned for registration to boost registration performance. We
explore three approaches to add contrastive supervision to the latent
features of the bottleneck layer in the U-Nets encoding the multimodal
images and evaluate three different critic functions. Our results show
that representations learned without additional supervision on latent fea-
tures perform best in the downstream task of registration on two public
biomedical datasets. We investigate the performance drop by exploiting
recent insights in contrastive learning in classification and self-supervised
learning. We visualize the spatial relations of the learned representations
by means of multidimensional scaling, and show that additional super-
vision on the bottleneck layer can lead to partial dimensional collapse of
the intermediate embedding space.

Keywords: Contrastive Learning · Multimodal Image Registration ·
Digital Pathology.

1 Introduction

Multimodal imaging enables capturing complementary information about a sam-
ple, essential for a large number of diagnoses in digital pathology. However, di-
rectly co-aligned data can only be provided if an imaging device hosts multiple
imaging modalities, otherwise individually acquired data have to be registered
by image processing. Different sensors may produce images of very different
appearance, making automated multimodal registration a very challenging task.
Consequently, the registration is often performed manually; a difficult, labor- and
time consuming, and hence expensive approach. Reliable automated multimodal
registration can reduce the workload, allowing for larger datasets to be studied
in research and clinical settings. Numerous methods are available for automated
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Fig. 1: Overview of the representation learning approach: Two U-Nets sharing no
weights are trained in parallel to learn dense representations (CoMIRs) through a
contrastive loss on the final output layers of the networks. Additional contrastive
losses acting on the features of the bottleneck (BN) layers are evaluated with an
aim to improve CoMIRs for registration.

monomodal registration, however, multimodal image registration is both more
difficult and with fewer tools available. Recently, a modality-independent repre-
sentation learning technique was introduced in [37]; the method generates Con-
trastive Multimodal Image Representations (CoMIRs) for Registration, which
can be registered using monomodal (intensity-based and feature-based) regis-
tration methods. CoMIR-based multimodal registration [37] has been success-
fully applied to various datasets: brightfield (BF) & second harmonic generation
(SHG) images in [37], remote sensing images (RGB & near-infrared), and cor-
relative time-lapse quantitative phase images (QPI) & fluorescence microscopy
(FM) images, and magnetic resonance images (MRI T1 & T2) in [27,32].

Based on a recent study [20] which has shown that representations learned
contrastively performed better in the downstream task of biomedical image clas-
sification when additional contrastive losses were used to supervise intermediate
layers in the network, we investigate if such additional supervision can be applied
to further improve CoMIRs for the downstream task of registration. A schematic
overview of the considered approach is given in Fig. 1.

Our contributions are as follows: (i) We evaluate three approaches of in-
cluding contrastive losses on U-Net bottleneck (BN) features when generat-
ing CoMIRs of BF and SHG images; for each we test three different similar-
ity/distance measures. We observe that leaving intermediate features uncon-
strained results in CoMIRs leading to more successful rigid multimodal image
registration. This differs from what was previously observed for features used
in biomedical image classification. (ii) We confirm that unconstrained interme-
diate features result in better registration on a second dataset of QPI and FM
images, using the best performing similarity measure observed on the BF and
SHG dataset in each approach. (iii) We investigate the reasons for the drop
in registration performance and observe that contrastive training on the BN
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features can lead to a partial dimensional collapse of the feature space. (iv)
Furthermore, we evaluate the relation between the quality of the generated rep-
resentations and the downstream task of image registration, using several image
distance/similarity measures.

2 Background

2.1 Representation Learning

Several recent approaches find common representations for images of different
modalities to enable monomodal registration methods. The common representa-
tion may be one of the involved modalities, e.g., learned by GAN-based Image-
To-Image (I2I) translation, where a generator and discriminator are trained in a
zero-sum game, generating representations in line with the appearance and sta-
tistical distribution of one modality given an image of another modality [3,38].
Another strategy is to map both of the considered image modalities into a com-
mon space: In [37], the contrastive loss InfoNCE [33] was used to produce dense,
image-like representations – called CoMIRs – which proved useful for multimodal
image registration on a variety of different datasets [37,27,32]. CoMIRs are gen-
erated by two U-Nets trained in parallel, sharing no weights, connected by the
contrastive loss InfoNCE [15,13], which maximizes a lower bound of mutual in-
formation (MI). Contrastive Learning is also used in [36] to perform I2I, which
inspired the development of ContraReg [8] to contrastively learn to perform
unsupervised, deformable multimodal image registration.

A number of I2I approaches [17,50,5,22] were evaluated in [37,27] for mul-
timodal registration, but the representations lacked similarity in structures or
intensity needed for registration. CoMIRs [37], however, performed well in combi-
nation with both intensity-based [31] and with feature-based registration meth-
ods.

Additional Supervision on Intermediate Layers
Recently it was shown in [20] that a momentum contrastive (MoCo) learning-
based framework benefits from additional supervision imposed on intermediate
layers. The features are more similar earlier in the network, resulting in better
performance in biomedical image classification. In [11], a three stream architec-
ture (TS-Net) is proposed combining Siammese and pseudo-Siammese networks
for patch matching of multimodal images. An additional contrastive loss on in-
termediate features improves the matching performance on three multimodal
datasets. Additional supervision on intermediate layers in U-Nets has mainly
evaluated on the BN layer. In [24], additional supervision on the BN features
is provided for liver and tumor segmentation. The authors argue that supervi-
sion on the BN layer can reduce information loss, due to its highly condensed
low-dimensional information of label maps. In [21], a Tunable U-Net (TU-Net)
uses a tuning parameter acting on the BN features, to change the output with-
out the requirement of multiple trained models. In [1], the effect of fine-tuning
different sets of layers of a pretrained U-Net for ultrasound and X-ray image
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segmentation is studied. The authors show that the choice of layers is critical for
the downstream tasks and differs significantly between segmentation and clas-
sification. This is based on the assumption that low-level features, which are
associated with shallow layers, are shared across different data sets. The authors
observe that freezing the BN has equivalent segmentation performance as fine-
tuning the entire network, highlighting the importance of that particular latent
representation.

Similarly, we focus on evaluating additional losses constraining the BN layer
in the U-Nets which generate CoMIRs for alignment of multimodal images.

2.2 Contrastive Learning

Contrastive Learning (CL) has been successfully employed in many tasks
- from self-supervised pretraining, to image retrieval and classification
[41,11,37,27,42,8,20]. The goal of CL is to learn a representation s.t. similar sam-
ples are mapped close to each other, while dissimilar samples are not. Similar
can refer to the same class, or different views or augmentations of one particular
sample. Usually, the learned representation is a 1D vector. CoMIRs differ in that
they are 2D image-like representations intended to preserve spatial structures,
not only optimized for their distinction to other samples. Learning CoMIRs is
closely related to self-supervised learning (SSL). While CoMIR training currently
relies on a labelled training set in form of aligned image pairs, the two images in
different modalities of one sample act as different views of one sample in SSL.

The features of multiple views in SSL depend strongly on data augmentation
(DA), as it decouples the correlations of features between the representations
of positive samples [47]. The importance of view selection is also addressed in
[42,49]. The authors in [42] find that the MI between views should be reduced
while information relevant for the downstream task has to be preserved. While
[47,42] argue for extensive DA, in [6] it was shown that extensive DA can yield
the projector head of a SSL network invariant to the DA to a higher degree than
the encoder itself, resulting in a projection to a low-dimensional embedding
space. This so-called dimensional collapse (DC) has been observed in different
CL settings [19,6,4,16,45] and is currently subject of research. The phenomenon
has been first studied in [19] and [16]. DC can occur if the variance caused by
DA is larger than the variance in the data distribution, implicit regularization to
favor low-rank solutions, or strong overparametrization [19]. For non-contrastive
SSL methods such as SimSiam or BYOL, underparametrization of the model
can cause at least partial collapse in [23].

Following these recent observations, we inspect if DC of the feature space is
the cause of representations which are unsuitable for feature-based registration.

3 Method

CoMIRs, as originally proposed, are learned by two U-Nets [18], sharing no
weights, connected by a contrastive loss given as follows:
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For D = {(x1
i ,x

2
i )}ni=1 an i.i.d. dataset containing n data points, xj is an

image in modality j, and fθj the network processing modality j with respective
parameters θj for j ∈ {1, 2}. Given an arbitrary image pair x = (x1,x2) ∈ D,
the loss is given by

L(D) = − 1

n
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i )/τ
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i ,y

2
i )/τ +

∑
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2
j )/τ

)
. (1)

L(D) is named InfoNCE as described in [34]. The exponential of a similarity
function (called critic) h(y1,y2) computes a chosen similarity between the rep-
resentations y1 = fθ1(x1) and y2 = fθ2(x2) for the scaling parameter τ > 0.

3.1 Additional Supervision of the BN latent representation

Different Critic functions We consider three types of similarity functions in
Eqn. 1 for the supervision of the BN latent representations:
– A Gaussian model with a constant variance h(y1,y2) = −||y1− y2||22 which

uses the L2 norm, i.e. mean squared error (MSE) as a similarity function;

– A trigonometric model h(y1,y2) = 〈y1,y2〉
||y1|| ||y2|| relating to cosine similarity;

– A model using the L1 norm as a similarity h(y1,y2) = −||y1 − y2||1.

We investigate the following approaches for supervision of the BN:
Approach I: Alternating loss L(D) given in Eq. (1) is computed in an

alternating way on the final output representations in the network as LC(D) and
on the BN latent features as LBN (D), taking turns every iteration. A hyperpa-
rameter ensures losses of the same magnitude for stable training.

Approach II: Summed loss As proposed in [20], the loss in Eq. (1) is
calculated in each iteration on the final representations in the network and on
the BN latent features. The two losses are combined in a weighted sum, requiring
an additional hyperparameter α to ensure that the two losses are of the same
magnitude: LSum(D) = LC(D) + αLBN (D)

Approach III: Pretraining using a contrastive loss on the BN layers
For this approach, the networks are trained with LBN (D) for the first 50 epochs
on the BN latent features. After this pretraining of the networks, LC(D) is
computed acting only on the final layer for 50 more epochs.

3.2 Implementation Details

All models are trained for 100 epochs, except the baseline model denoted ”Base-
line 50” in Fig. 6, which is trained for 50 epochs. In all experiments, LC(D) uses
MSE as h(y1,y2) (as suggested in [37]), while the similarity functions acting on
the BN layers are varied between none, MSE, cosine similarity, and L1-norm as
described in Sect. 3.1. In all cases 1-channel CoMIRs are generated with identical,
random data augmentation consisting of random flips, rotations, Gaussian blur,
added Gaussian noise and contrast adjustments. More detailed implementation
information, including all chosen hyperparameters, can be found in appendix
Sec. 9.2.
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4 Evaluation

4.1 Datasets

SHG & BF Dataset
The dataset is a publicly available, manually aligned registration benchmark [9]
consisting of SHG and BF crops of tissue micro-array (TMA) image pairs. The
training set consists of 40 image pairs of size 834× 834 px cropped from original
TMA images [10] to avoid any border affects due to transformations. The test
set comprises 134 pairs of synthetically, randomly rotated and translated images
of up to ±30 degrees, and ±100 px.

QPI & FM Dataset
The dataset consists of simultaneously acquired correlative time-lapse QPI [43]
and FM images [44] of three prostatic cell lines, captured as time-lapse stacks at
seven different fields of view while exposed to cell death inducing compounds.
It is openly available for multimodal registration [28] and is used as in [27]. The
images are of size 300×300 px, with 420 test samples in each of three evaluation
folds. All images originating from one cell line are used as one fold in 3-folded
cross-validation. The test set was created by synthetic random rotations of up
to ±20 degrees and translations of up to ±28 px.

4.2 Evaluation Metrics

Registration performance: We register CoMIRs by extracting Scale-Invariant
Feature Transform (SIFT, [48]) features, and match them by Random Sam-
ple Consensus (RANSAC [12]). The registration error is calculated as err =
1
4

∑4
i=1 ||C

Ref
i − CRegi ||2, where Ci are the corner points of the reference image

CRefi , and the registered image CRegi respectively. The registration success rate
(RSR) is measured by the percentage of test images which are successfully reg-
istered, whereas success is defined by an error below a certain threshold. The
implementation details, including parameter choices, are reported in appendix
Sec. 9.2.

Measuring Representation Quality: Intuitively, the higher similarity in ap-
pearance the images have, the more successful their registration. Therefore, the
“goodness” of CoMIRs can be evaluated in two ways: by evaluating (i) the sim-
ilarity/distance between the CoMIRs of the corresponding images; and (ii) the
success of their registration. We correlate both types of evaluation in this study.
For comparing CoMIRs we utilize several approaches common for quantifying
image similarity/distance. More precisely, we evaluate the following:

– the pixelwise measures MSE and correlation,
– the perceptual similarity measure structural similarity index measure

(SSIM, [46]),
– a distance measure which combines intensity and spatial information, namely
α-Average Minimal Distance (α-AMD, [31,25]),
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– a distance measure comparing two distributions and is a popular choice to
evaluate GAN generated representations [29], namely Fréchet Inception
Distance (FID, [14]).

The respective definitions are given in appendix Sec. 9.1.

5 Results

Registration Performance
Fig. 2a shows the RSR, computed as the percentage of the test set which was
registered with an error less than 100 px on the BF & SHG dataset. The methods
are grouped color-wise w.r.t. to the similarity function used for the BN supervi-
sion. In green the baseline results are shown for CoMIRs as introduced in [37],
using no additional loss on intermediate layers. Detailed results of each run per
experiment and examples of CoMIRs for the tested approaches can be found in
appendix Sec. 9.3.
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Fig. 2: Evaluation of the CoMIRs w.r.t. to registration performance.

It should be considered that the Approaches I and III only spend half of all
epochs on evaluating LC(D), ensuring pixel-wise intensity similarity in the final
CoMIRs. To confirm that this does not cause the subsequent lower registration
performance, a second set of baseline experiments was run for only 50 instead of
100 epochs. Hence, the plots include the baseline trained for 100 epochs (”Base-
line 100”) and also for 50 epochs (”Baseline 50”).

The best performing critic function, w.r.t. the registration performance on
the BF & SHG Dataset (i.e. L1), is used to assess the three approaches on the
second multimodal dataset, containing QPI and FM images of cells. This dataset
confirms our observations that no supervision on intermediate layers results in
CoMIRs more suitable for registration. The RSR (averaged over three folds)
corresponding to the percentage of the test set with a relative registration error
of less than 2% of the image size, as used in [27], is shown in Fig. 2b (detailed
results are listed in the appendix). We observe that on both datasets the Baseline
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Table 1: The medians of all the considered performance measures, computed on
the test set and averaged over three runs, for the different approaches to include
supervision of the BN latent representations. Arrows indicate if a high (↑) or low
(↓) value correspond to a good result.

Approach Intermediate Loss MSE ↓ SSIM ↑ Correlation ↑ α-AMD ↓ FID ↓ Reg. Success Rate ↑
baseline 100 none 4,771 0.53 0.66 1.86 93.26 74.38
alternate MSE 4,534 0.46 0.36 2.21 137.89 27.86
alternate Cosine 3,949 0.50 0.42 1.32 123.31 31.84
alternate L1 7,603 0.37 0.47 5.68 190.26 44.53
sum MSE 4,674 0.57 0.60 2.33 129.31 58.21
sum Cosine 5,776 0.48 0.52 7.35 219.76 60.20
sum L1 3,894 0.57 0.64 1.70 106.09 65.67
pretrain MSE 4,815 0.37 0.32 3.46 179.98 20.90
pretrain Cosine 8,139 0.35 0.28 7.31 181.93 24.13
pretrain L1 5,668 0.44 0.48 2.86 160.34 45.02

approach outperforms the considered alternatives, producing CoMIRs which lead
to the highest RSR.

Representation Quality
We report the image similarities/distances as introduced in Sec. 4.2 for CoMIRs
produced on the BF & SHG dataset. Table 1 lists the performance measures
computed for the test set (median over all images where applicable), averaged
over three runs. Fig. 3 explores the relations between the mean of the con-
sidered quality assessment of the generated CoMIRs (in terms of their similar-
ity/distance), and their RSR. Note that horizontal error-bars in Fig. 3 can only
be compared intraplot-wise, but not inter-plot, as the evaluation measures are
of different ranges. The Pearson correlation coefficient (PCC) is reported to as-
sess the linear relationship between the measures and RSR. The PCC ranges in
[−1, 1] with −1 corresponding to a direct, negative correlation, 0 representing
no correlation, and 1 representing a direct, positive correlation. Values close to
±1 indicate a high agreement between a similarity/distance measure and RSR.

6 Exploration of the Embedding Space

To investigate the reasons of the reduced performance when using additional
supervision on the BN features, we inspect the training features on the BF &
SHG dataset.

We can easily compute the relative (dis-)similarities between all CoMIR pairs,
e.g. w.r.t. MSE. Based on dissimilarities of data points, Multidimensional Scal-
ing (MDS, [2]), used in dimensionality reduction and visualization, maps high
dimensional data into a low dimensional metric space by numerical optimization,
preserving the relative dissimilarities between the samples.

We perform metric MDS on the dissimilarity matrix∆ = (dij) ∈ Rn×n+ to find
2D points whose distances ∆̄ = (d̄ij) approximate the dissimilarities in ∆. The
resulting optimization problem minimizes an objective function called stress. We
empirically observe that using Sammon’s non-linear stress criterion [39] results
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Fig. 3: Relation between RSR and image (dis-)similarity measures. Marker style
indicates the approach (alternating, summed or pretraining loss), color of the
marker and bars correspond to the critic functions used in LBN (D) (none, MSE,
cosine sim. and L1), error-bars correspond to the standard deviations computed
over 3 runs. The PCC between each measure and the registration performance
is reported. Best appreciated zoomed in.

in the best fit and lowest stress to embed CoMIR and BN features, given by

Stress =
1∑

i<j dij

∑
i<j

(dij − d̄ij)2

dij
(2)

where dij denotes the distance between sample i and j in the high-dimensional
space and d̄ij the distance in the 2D projection space. ∆ contains the pairwise
MSE between all features, either BN or CoMIR features.

Fig. 4 shows the MDS embeddings of BN and CoMIR features of the training
set for selected runs of each approach. Visualizations for all runs are in appendix
Sec. 9.3. Features resulting from the BF images are marked by blue diamonds,
from SHG images by red diamonds. All corresponding samples, i.e. the features
resulting from a multimodal image pair, are connected by a yellow line. The
green frames mark runs with high RSR, magenta frames runs with low RSR. We
observe in Fig. 4 that CoMIRs without intermediate loss on BN layers (”Baseline
100”) are spatially spread. The distances between corresponding samples are
reasonably small, though using a LBN (D) with a MSE critic in a sum with LC(D)
can further reduce the distance between corresponding pairs. This embedding
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Fig. 4: Examples of Metric MDS embeddings of CoMIRs and BN features. BF
features are marked by blue diamonds, SHG features by red diamonds, corre-
sponding samples are connected by a yellow line. Green frames mark runs with
high RSR (72.4% for Baseline 100, 67.9% for Sum Loss using MSE), the magenta
frames low RSR (32.1% for Alternating Loss using L1, 9.7% for Pretraining using
MSE).

configuration is the best among all experiments w.r.t. pairwise distances, however
the RSR is below the baseline.
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learned after pretraining with a loss on
the BN, and the baseline. Three runs
were performed for each experiment.

For some experiments with low
RSR, we observe that the embeddings
have a tendency to cluster w.r.t. the
modalities, as for example using an al-
ternating loss with L1 in Fig. 4. Fur-
thermore, we observe that the pre-
training approach, can lead to a clus-
ter of SHG samples, contracted to a
single point. Additionally, we visual-
ize the embeddings of the BN fea-
tures for each of these approaches (vi-
sualizations for all runs are in the
appendix). We observe that training
CoMIRs without intermediate super-
vision results in BN features which are
clustered by the modality they origi-
nate from.

We observe that CoMIRs of SHG images learned after pretraining the BN
layer can collapse to a point. To quantify the dimensionality of the embedding
space - or its collapse - the authors in [19] compute the covariance matrix of
the embedding vectors and perform its singular value decomposition (SVD). In-
specting the spectrum of the resulting singular values (SVs) by plotting their
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value in sorted order, shows how many collapse to zero, corresponding to col-
lapsed dimensions. This approach to quantify DC in CL has also been adopted
in [6,23].
We plot the SV spectrum of the covariance matrix of CoMIRs in Fig. 5. While
we do not observe a complete DC, we see that the SVs decay much faster for
approach III using pretraining, i.e. they are closer to a low-rank solution. The
square of a SV is proportional to the variance explained by its corresponding
singular vector, i.e. the smaller the SVs the less variance in the data is explained
and more likely corresponds to noise.

7 Discussion

Our results shown in Fig. 2a and 2b indicate that CoMIRs generated using
a loss acting only on the final features yield the best representations for the
downstream task of registration on both observed datasets, outperforming all
evaluated attempts to impose similarity of the features earlier in the networks.
We further observe on both datasets that Approach II leads to a higher RSR
than Approach I and III. On the BF & SHG Dataset, using L1 as a similarity
in the contrastive loss produces, on average, better representations w.r.t. RSR,
compared to cosine similarity, which in turn performs better than using MSE.
However, the error bars indicate a wide spread in the results. On the QPI & Flu-
orescence Dataset, Approach III results in CoMIRs with higher RSR compared
to Approach I (alternating the losses), unlike in the case of BF & SHG images.

Figure 3 presents the relation between similarity/distance of generated
CoMIR pairs and their RSR. This connects our two stated evaluation objec-
tives: the quality of appearance of the representations, and their applicability for
registration. For the distance measures (MSE, α-AMD, FID) a well performing
measure would be located in the upper left corner (high RSR, and low distance
between the image pairs), while for the similarity measures (Correlation, SSIM)
it would be in the upper right corner. We observe that the mean correlation
between CoMIR pairs (Fig. 3b) correlates strongly with the RSR of these repre-
sentations (PCC 0.98), while for the other measures the relations are less clear.
As intuitively expected, the PCC indicates (weak) negative correlation between
RSR and distance measures and positive correlation for the similarity measures.
We observe that for the BF & SHG Dataset the baseline approach performs
best in terms of RSR, also exhibiting stability (low standard deviation), high
similarity and low distance between the corresponding image pairs. Among the
experiments using intermediate losses on the BN, L1-based loss generated the
most correlated CoMIRs within any loss fusion approach and the highest RSR.

Furthermore, we investigate the reasons of the lower RSR by visualizing the
embeddings of the train set in Sec. 6. We observe that additional supervision
on the BN can lead to clustering by modality in the embedding space, and
in turn to less discriminative features among the corresponding CoMIR pair.
The embedding of the BN features shows that the network learns features at
the BN which are modality-specific rather than similar across modalities when
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left unregulated. This is in line with other observations that suggest pseudo-
Siammese networks are prefered over Siammese networks for multimodal tasks
in which the modalities differ strongly from each other [11].

We observe that pretraining on the BN features can lead to partial DC from
which the training cannot recover in the subsequent training of the final layer.
This observation may be related to observations in [23], which connect partial
DC to models which are too small relative to the dataset size. However, this was
observed for SimSiam, a non-contrastive SSL approach not relying on negatives.

8 Conclusions

Contrastive learning can generate common representations for multimodal im-
ages, called CoMIRs, which are similar in intensity, structures and features, al-
lowing the utilization of monomodal registration methods. This reduces the very
challenging task of multimodal registration to a, typically easier, monomodal
one. In this study, we explore three approaches to add supervision to the latent
representations in the bottleneck of the U-Net used to generate CoMIRs, im-
posing similarity of the features earlier in the network. For each approach we
test three critic functions for the loss evaluated on these latent features. Our re-
sults show that CoMIRs learned with no additional supervision perform best in
the downstream task of registration. More so, we show that without additional
supervision, the BN features tend to extract modality-specific information and
the shared features are likely extracted in the decoder of the U-Net. Additional
supervision on the BN features often propagates the tendency to modality-wise
clusters in the feature space into the final CoMIRs, making them less useful for
registration. We observe partial DC of the learned features when the contrastive
loss is only applied to the BN during pretraining and see that this collapse is
maintained during the subsequent training on the final layers.

We address the quality quantification of learned image representations. We
relate commonly used image distance and similarity measures to the representa-
tions’ usefulness for registration. We show that correlation corresponds highly to
registration performance. Representations useful for registrations also score rea-
sonably well with respect to SSIM, MSE, α-AMD, and FID, however the reverse
does not necessarily hold. The study explores the behavior of CoMIRs with BN
supervision on a publicly available multimodal dataset of BF and SHG images.
We confirm the main finding that CoMIRs without additional intermediate su-
pervision are more useful for registrationon on a second multimodal dataset of
correlative time-lapse QPI and fluorescence images.

Our study indicates the importance to develop representation learning ap-
proaches with a particular application on mind, as we show that concepts ap-
plicable for biomedical image classification do not necessarily generalize to reg-
istration tasks in the same domain and learning context, in this case contrastive
learning. Multimodal image registration remains in general a very difficult task
and we believe it is important to explore and further improve upon suitable
learning strategies, which we will continue in our future work.
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27. Lu, J., Öfverstedt, J., Lindblad, J., Sladoje, N.: Is image-to-image translation
the panacea for multimodal image registration? a comparative study. PLOS ONE
17(11), 1–33 (11 2022). https://doi.org/10.1371/journal.pone.0276196
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9 Appendix

9.1 Performance measures

Finding a suitable measure to assess the quality of representations for the down-
stream task of registration is challenging. We evaluate the quality of the differ-
ently learned dense, image-like CoMIRs in two ways, both through their direct
comparison using several image similarity/distance measures, and by evaluation
of their performance in the downstream task of image registration. The measures
used in this studies are defined as follows.
MSE
The MSE is computed by averaging the squared pixel-wise intensity differences
between two images. It is given by

MSE(Y A, Y B) =
1

N

N∑
i=1

||Y Ai − Y Bi ||2

for Yi denoting pixels of aligned corresponding CoMIRs of modality A and B,
respectively. N denotes the total number of pixels in each image. A lower MSE
value indicates higher similarity between two images (CoMIRs).

SSIM
The SSIM index [46] assesses the visual impact of luminance, contrast and struc-
ture. It is calculated using a sliding Gaussian window over the image pair. The
local SSIM is given by

SSIM(Y Aw , Y
B
w ) =

(2Ȳ Aw Ȳ
B
w + c1)(2σY A

w Y B
w

+ c2)(
(Ȳ Aw )2(Ȳ Bw )2 + c1)(σ2

Y A
w

+ σ2
Y B
w

+ c2)
)

where Yw is a window in one modality of chosen size to compute the local SSIM,
Ȳw denotes its mean, σYw

its standard deviation, σY A
w Y B

w
the cross-covariance

between two windows of different modalities, c1 = (0.01 · L)2, c2 = (0.03 · L)2,
where L is the dynamic range value. The global SSIM is the mean of local
SSIM values and ranges in [0, 1]. The value 1 indicates that the two images
(CoMIRs) have maximal structural similarity. Smaller values indicate deviations.

Correlation
The 2-D correlation coefficient between two aligned images (CoMIRs) generated
from two input modalities is given by

r(Y A, Y B) =

∑
m

∑
n(Y Amn − Ȳ A)(Y Bmn − Ȳ B)√(∑

m

∑
n(Y Amn − Ȳ A)2

) (∑
m

∑
n(Y Bmn − Ȳ B)2

)
where Ȳ is the mean of the respective images of the respective modalities.
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α-AMD
Distance measures between images combining intensity and spatial information,
were introduced in [31] and further developed for intensity-based registration
in [25]. The developed registration framework is successfully combined with
CoMIRs for multimodal registration in [37]. Here we use α-AMD to quantify the
distance between two aligned CoMIRs generated by the two input modalities.
Further details about the computation, as well as the related code are available
at [30].

FID
FID [14] has been used as a distance measure between two sets of images to quan-
tify the quality of GAN-generated images. It has been shown to correlate well
with human visual assessments of generated images [22,5,35]; however, counter
examples are given in [26]. Correlation between FID as a measure of quality of
generated CoMIRs and registration performance has been reported in [27]. Un-
like the other measures listed above, FID is not being computed for one image
pair, but evaluates the similarity between the distributions of two sets of images.
It is computed using the output activations of an Inception v3 [40] network, pre-
trained on ImageNet [7] and considers the distribution of all activations of the
test set. It is given by

FID(DA,DB) = ||µA − µB ||22 + tr

(
ΣA +ΣB − 2

(
(ΣA)

1
2 ·ΣB · (ΣA)

1
2

) 1
2

)

where µ is the mean vector and Σ the covariance matrix of a multivariate dis-
tribution resulting form a set of images in its respective modality.

9.2 Implementation Details

The U-Net architectures [18] for both the BF & SHG dataset and QPI & Flu-
orescence dataset are identical. They have 32 convolutional filters for the first
convolution, 4 dense blocks of depth 6 as down and up blocks and 4 BN layers.
Upsampling was used as well as max pooling, a dropout rate of 0.2, no early
transition or activation function in the last layer and no compression. There is
no non-linear activation in the final layer.

The temperature in the loss on the final layer was set to 0.5 for all experi-
ments.

Stochastic gradient descent was used with a learning rate of 10−2, a weight
decay of 10−5 and a momentum of 0.9. The batch size was 32, and the steps
per epoch 32. The gradient norm was limited to 1. L1 activation decay was set
to 10−4, L2 activation decay to 10−2. The image patch size was 128× 128. The
data augmentation consisted of flips (p = 0.5) and random integer rotations
by up to ±180◦ using either a linear, nearest neighbor or cubic interpolation
randomly, Gaussian blur (p = 0.5, σ = (0, 2.0)), additive Gaussian noise(loc=0.0,
scale=(0.0, 0.1)) and linear contrast adjustment (p = 0.5, scaling (0.8, 1.0/0.8)).
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Fig. 6: Evaluation of the generated CoMIR representations by different ap-
proaches of supervision of the BN latent representations. (a) Success rate of
registration of the generated CoMIRs, for all the considered representation learn-
ing methods. (b)-(f) Quality of the generated CoMIRs, expressed by different
similarity (c,d), or distance (b,e,f) measures, for all the considered representa-
tion learning approaches. ”Baseline 100” and ”Baseline 50” refer to the baseline
trained for 100 and 50 epochs, respectively. The color of the bars corresponds to
the similarity/distance measure used in the loss for the BN features (green-none,
blue-MSE, red-cosine similarity and yellow-L1-norm). The error-bars correspond
to the standard deviation computed over 3 runs.

For approach I, the hyperparameter to combine the losses was set to 1. For
approach II, the hyperparameter was 0.5.

The registration using SIFT is based on the implementation in Fiji 2.0.0 using
the mpicbg.imagefeatures package. The feature descriptor size is 4 samples per
row and column, the orientation bins are 8 bins per local histogram. The scale
octaves are in [128, 1024]px with 3 steps per scale octave and the initial σ of
each scale octave is equal to 1.6.

9.3 Results

Detailed results of experiments with the BF & SHG dataset are given in Table
2 and for the QPI & Fluorescence dataset in Table 3.

Figure 7 shows an image pair randomly selected from the BF & SHG test
set together with some of its CoMIRs. Fig. 7a, resp. Fig. 7b, shows the repre-
sentations produced by the run of each method which yielded the highest, resp.
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Table 2: Registration Results and image metrics on BF & SHG dataset.
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Fold tlevel SIFT Registration Success Rate
baseline 1 1 none 77.62
baseline 1 2 none 74.29
baseline 1 3 none 66.67
baseline 1 4 none 61.90

tlevel average 70.12
baseline 2 1 none 72.38
baseline 2 2 none 69.29
baseline 2 3 none 61.67
baseline 2 4 none 60.24

tlevel average 65.89
baseline 3 1 none 55.00
baseline 3 2 none 50.48
baseline 3 3 none 47.14
baseline 3 4 none 42.86

tlevel average 48.87
Fold average 61.63

alternate 1 1 L1 61.19
alternate 1 2 L1 54.52
alternate 1 3 L1 51.43
alternate 1 4 L1 45.95

tlevel average 53.27
alternate 2 1 L1 38.10
alternate 2 2 L1 30.95
alternate 2 3 L1 27.86
alternate 2 4 L1 24.05

tlevel average 30.24
alternate 3 1 L1 33.10
alternate 3 2 L1 26.67
alternate 3 3 L1 23.57
alternate 3 4 L1 21.90

tlevel average 26.31
Fold average 36.61

sum 1 1 L1 66.19
sum 1 2 L1 57.62
sum 1 3 L1 55.48
sum 1 4 L1 50.48

tlevel average 57.44
sum 2 1 L1 53.81
sum 2 2 L1 45.95
sum 2 3 L1 44.52
sum 2 4 L1 40.71

tlevel average 46.25
sum 3 1 L1 66.90
sum 3 2 L1 58.81
sum 3 3 L1 56.67
sum 3 4 L1 46.43

tlevel average 57.20
Fold average 53.63

scheduled 1 1 L1 71.19
scheduled 1 2 L1 62.62
scheduled 1 3 L1 60.24
scheduled 1 4 L1 51.90

tlevel average 61.49
scheduled 2 1 L1 58.57
scheduled 2 2 L1 51.43
scheduled 2 3 L1 43.57
scheduled 2 4 L1 42.14

tlevel average 48.93
scheduled 3 1 L1 45.48
scheduled 3 2 L1 35.24
scheduled 3 3 L1 32.14
scheduled 3 4 L1 30.95

tlevel average 35.95
Fold average 48.79

Table 3: Registration Results on Fluorescence & QPI dataset.
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Baseline Alternate MSE Alternate Cos Alternate L1 Sum MSE Sum Cos Sum L1 Pretrain MSE Pretrain Cos Pretrain L1

76.1% 35.1% 47.8% 55.2% 68.0% 67.2% 67.2% 26.9% 38.8% 64.18%

Input

(a) CoMIRs of runs with highest registration performance for each approach.
Baseline Alternate MSE Alternate Cos Alternate L1 Sum MSE Sum Cos Sum L1 Pretrain MSE Pretrain Cos Pretrain L1

72.4% 20.2% 23.1% 32.1% 43.3% 51.5% 56.7% 9.7% 0.7% 25.4%

Input

(b) CoMIRs of runs with lowest registration performance for each approach.

Fig. 7: Example of one image pair from the BF & SHG test set and its CoMIRs
produced by the studied approaches. (a) The representations generated by the
best performing run w.r.t. to the RSR of one particular setup for that image pair.
(b) The representations generated by the worst performing run of one particular
setup for that image pair. The upper rows in (a) and (b) show the BF image and
its corresponding CoMIRs, the lower rows in (a) and (b) show the SHG image
and its CoMIRs. Below the CoMIRs, the RSR on the entire test set, reached in
the particular run that generates the shown CoMIRs, is given for reference.

lowest, RSR over the whole test set. Below each CoMIR pair, the overall RSR
over the entire test set for each particular run is given.

In Fig. 8, an image pair randomly selected from the QPI & FM test set
together with its CoMIRs is shown. Below each CoMIR pair, the overall RSR
over the tlevel subset of the fold from which the examples images were drawn is
given.

Figure 6 summarizes the results of evaluation of the CoMIRs generated with
the different explored approaches to supervise the BN latent representations.
Fig. 6(a) shows the RSR, computed as the percent of images in the test set
which were successfully registered with an error less than 100 px. Fig. 6(b) - (f)
show the level of similarity/difference (as the measure of quality) of the generated
CoMIRs, quantified by different similarity (c,d) and distance (b,e,f) measures.

9.4 MDS Embeddings

Fig. 9 shows the embeddings of CoMIR features using metric MDS with Sam-
mon’s stress criterion for all experiments. Fig. 10 shows the embeddings of BN
features using metric MDS with Sammon’s stress criterion for all experiments.
In Fig. 9 and 10 each row shows the MDS solutions for a particular approach
and similarity measure configuration, the columns corresponds to the three con-
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Input Baseline

72.4%

Alternate L1

38.1%

Sum L1

53.8%

Pretrain L1

58.6%

Q
PI

FM

Fig. 8: Example of one image pair from the QPI & FM test set and its CoMIRs
produced by the studied approaches using the best performance critic in the
experiments on the BF & SHG dataset. The upper row show the FM image and
its corresponding CoMIRs, the lower row show the QPI image and its CoMIRs.
Below the CoMIRs, the RSR on the tlevel subset of the fold to which these
CoMIRs belong is given for reference.

ducted runs, corresponding to the runs shown in Table Appendix 1). The green
frames mark embeddings of runs with registration performance higher than 65%,
the magenta frames mark runs with poor registration performance below 35%.
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Fig. 9: Metric MDS solutions of CoMIRs.
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Fig. 10: Metric MDS solutions of BN representations.
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