Abstract
In a stream learning scenario, where new data arrives at a slow pace, it is crucial to leverage new knowledge at the same rate without losing prior knowledge, and without assuming data stationarity. This scenario presents a significant challenge for incremental learning, particularly for tasks such as object recognition in video streams. In this paper, a novel approach is proposed that uses a set of weak classifiers that evolves into ensembles to enhance the generalization power of the system, as new video subsequences of the same instances are presented. We evaluate the efficiency of our approach and compare with state-of-the-art methods using a benchmark dataset. The code is available at https://github.com/vilaB/object_recognition.
C. D. Parga and G. Vilariño—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Acharya, M., Hayes, T.L., Kanan, C.: Rodeo: replay for online object detection. In: The British Machine Vision Conference (2020)
Bian, Y., Chen, H.: When does diversity help generalization in classification ensembles? IEEE Trans. Cybern. 52(9), 9059–9075 (2022)
Coop, R., Mishtal, A., Arel, I.: Ensemble learning in fixed expansion layer networks for mitigating catastrophic forgetting. IEEE Trans. Neural Netw. Learn. Syst. 24(10), 1623–1634 (2013)
De Lange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3366–3385 (2022)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015)
Gomes, H.M., Read, J., Bifet, A.: Streaming random patches for evolving data stream classification. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 240–249 (2019)
Gomes, H.M., Read, J., Bifet, A., Barddal, J.P., Gama, J.A.: Machine learning for streaming data: state of the art, challenges, and opportunities. SIGKDD Explor. Newsl. 21(2), 6–22 (2019)
Hayes, T.L., Cahill, N.D., Kanan, C.: Memory efficient experience replay for streaming learning. In: 2019 International Conference on Robotics and Automation (ICRA). pp. 9769–9776 (2019)
Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: REMIND your neural network to prevent catastrophic forgetting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 466–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_28
Hayes, T.L., Kanan, C.: Lifelong machine learning with deep streaming linear discriminant analysis. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 887–896 (2020)
Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106. Association for Computing Machinery, New York, NY, USA (2001)
Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)
Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2018)
Lomonaco, V., Maltoni, D.: Core50: a new dataset and benchmark for continuous object recognition. In: Levine, S., Vanhoucke, V., Goldberg, K. (eds.) Proceedings of the 1st Annual Conference on Robot Learning. Proceedings of Machine Learning Research, vol. 78, pp. 17–26. PMLR, 13–15 November 2017
Lopez-Lopez, E., Pardo, X.M., Regueiro, C.V.: Incremental learning from low-labelled stream data in open-set video face recognition. Pattern Recogn. 131, 108885 (2022)
Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. Adv. Neural Inf. Process. Syst. 30, 6470–6479 (2017)
López Lobo, J., Laña, I., Del Ser, J., Bilbao, N., Kasabov, N.: Evolving spiking neural networks for online learning over drifting data streams. Neural Netw. 108, 1–19 (2018)
Parisi, G.I., Tani, J., Weber, C., Wermter, S.: Lifelong learning of spatiotemporal representations with dual-memory recurrent self-organization. Front. Neurorobotics 12 (2018)
Read, J., Bifet, A., Holmes, G., Pfahringer, B.: Scalable and efficient multi-label classification for evolving data streams. Mach. Learn. 88, 243–272 (2012)
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Sahoo, D., Pham, Q., Lu, J., Hoi, S.C.H.: Online deep learning: learning deep neural networks on the fly. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 2660–2666. IJCAI’18, AAAI Press (2018)
Wang, M., Deng, W.: Mitigating bias in face recognition using skewness-aware reinforcement learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9319–9328 (2020)
Wankhade, K.K., Jondhale, K.C., Dongre, S.S.: A clustering and ensemble based classifier for data stream classification. Appl. Soft Comput. 102, 107076 (2021)
Yan, J., Jin, D., Lee, C.W., Liu, P.: A comparative study of off-line deep learning based network intrusion detection. In: 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 299–304 (2018)
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)
Acknowledgments
This work has received financial support from the Spanish government (project PID2020-119367RB-I00); from the Xunta de Galicia, Consellaría de Cultura, Educación e Ordenación Universitaria (accreditations 2019-2022 ED431G-2019/04 and ED431G 2019/01, and reference competitive groups 2021-2024 ED431C 2021/48 and ED431C 2021/30), and from the European Regional Development Fund (ERDF/FEDER).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Parga, C.D., Vilariño, G., Pardo, X.M., Regueiro, C.V. (2023). \(S^{2}\)-LOR: Supervised Stream Learning for Object Recognition. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-36616-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36615-4
Online ISBN: 978-3-031-36616-1
eBook Packages: Computer ScienceComputer Science (R0)