Skip to main content

\(S^{2}\)-LOR: Supervised Stream Learning for Object Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2023)

Abstract

In a stream learning scenario, where new data arrives at a slow pace, it is crucial to leverage new knowledge at the same rate without losing prior knowledge, and without assuming data stationarity. This scenario presents a significant challenge for incremental learning, particularly for tasks such as object recognition in video streams. In this paper, a novel approach is proposed that uses a set of weak classifiers that evolves into ensembles to enhance the generalization power of the system, as new video subsequences of the same instances are presented. We evaluate the efficiency of our approach and compare with state-of-the-art methods using a benchmark dataset. The code is available at https://github.com/vilaB/object_recognition.

C. D. Parga and G. Vilariño—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://vlomonaco.github.io/core50/.

References

  1. Acharya, M., Hayes, T.L., Kanan, C.: Rodeo: replay for online object detection. In: The British Machine Vision Conference (2020)

    Google Scholar 

  2. Bian, Y., Chen, H.: When does diversity help generalization in classification ensembles? IEEE Trans. Cybern. 52(9), 9059–9075 (2022)

    Article  Google Scholar 

  3. Coop, R., Mishtal, A., Arel, I.: Ensemble learning in fixed expansion layer networks for mitigating catastrophic forgetting. IEEE Trans. Neural Netw. Learn. Syst. 24(10), 1623–1634 (2013)

    Article  Google Scholar 

  4. De Lange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3366–3385 (2022)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015)

    Article  Google Scholar 

  7. Gomes, H.M., Read, J., Bifet, A.: Streaming random patches for evolving data stream classification. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 240–249 (2019)

    Google Scholar 

  8. Gomes, H.M., Read, J., Bifet, A., Barddal, J.P., Gama, J.A.: Machine learning for streaming data: state of the art, challenges, and opportunities. SIGKDD Explor. Newsl. 21(2), 6–22 (2019)

    Google Scholar 

  9. Hayes, T.L., Cahill, N.D., Kanan, C.: Memory efficient experience replay for streaming learning. In: 2019 International Conference on Robotics and Automation (ICRA). pp. 9769–9776 (2019)

    Google Scholar 

  10. Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: REMIND your neural network to prevent catastrophic forgetting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 466–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_28

    Chapter  Google Scholar 

  11. Hayes, T.L., Kanan, C.: Lifelong machine learning with deep streaming linear discriminant analysis. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 887–896 (2020)

    Google Scholar 

  12. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106. Association for Computing Machinery, New York, NY, USA (2001)

    Google Scholar 

  13. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2018)

    Article  Google Scholar 

  15. Lomonaco, V., Maltoni, D.: Core50: a new dataset and benchmark for continuous object recognition. In: Levine, S., Vanhoucke, V., Goldberg, K. (eds.) Proceedings of the 1st Annual Conference on Robot Learning. Proceedings of Machine Learning Research, vol. 78, pp. 17–26. PMLR, 13–15 November 2017

    Google Scholar 

  16. Lopez-Lopez, E., Pardo, X.M., Regueiro, C.V.: Incremental learning from low-labelled stream data in open-set video face recognition. Pattern Recogn. 131, 108885 (2022)

    Article  Google Scholar 

  17. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. Adv. Neural Inf. Process. Syst. 30, 6470–6479 (2017)

    Google Scholar 

  18. López Lobo, J., Laña, I., Del Ser, J., Bilbao, N., Kasabov, N.: Evolving spiking neural networks for online learning over drifting data streams. Neural Netw. 108, 1–19 (2018)

    Google Scholar 

  19. Parisi, G.I., Tani, J., Weber, C., Wermter, S.: Lifelong learning of spatiotemporal representations with dual-memory recurrent self-organization. Front. Neurorobotics 12 (2018)

    Google Scholar 

  20. Read, J., Bifet, A., Holmes, G., Pfahringer, B.: Scalable and efficient multi-label classification for evolving data streams. Mach. Learn. 88, 243–272 (2012)

    Google Scholar 

  21. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  22. Sahoo, D., Pham, Q., Lu, J., Hoi, S.C.H.: Online deep learning: learning deep neural networks on the fly. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 2660–2666. IJCAI’18, AAAI Press (2018)

    Google Scholar 

  23. Wang, M., Deng, W.: Mitigating bias in face recognition using skewness-aware reinforcement learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9319–9328 (2020)

    Google Scholar 

  24. Wankhade, K.K., Jondhale, K.C., Dongre, S.S.: A clustering and ensemble based classifier for data stream classification. Appl. Soft Comput. 102, 107076 (2021)

    Article  Google Scholar 

  25. Yan, J., Jin, D., Lee, C.W., Liu, P.: A comparative study of off-line deep learning based network intrusion detection. In: 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 299–304 (2018)

    Google Scholar 

  26. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work has received financial support from the Spanish government (project PID2020-119367RB-I00); from the Xunta de Galicia, Consellaría de Cultura, Educación e Ordenación Universitaria (accreditations 2019-2022 ED431G-2019/04 and ED431G 2019/01, and reference competitive groups 2021-2024 ED431C 2021/48 and ED431C 2021/30), and from the European Regional Development Fund (ERDF/FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César D. Parga .

Editor information

Editors and Affiliations

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parga, C.D., Vilariño, G., Pardo, X.M., Regueiro, C.V. (2023). \(S^{2}\)-LOR: Supervised Stream Learning for Object Recognition. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36616-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36615-4

  • Online ISBN: 978-3-031-36616-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics