Skip to main content

Synthetic Spermatozoa Video Sequences Generation Using Adversarial Imitation Learning

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2023)

Abstract

Automated sperm sample analysis using computer vision techniques has gained increasing interest due to the tedious and time-consuming nature of manual evaluation. Deep learning models have been applied for sperm detection, tracking, motility analysis, and morphology recognition. However, the lack of labeled data hinders their adoption in laboratories. In this work, we propose a method to generate synthetic spermatozoa video sequences using Generative Adversarial Imitation Learning (GAIL). Our approach uses a parametric model based on Bezier splines to generate frames of a single spermatozoon. We evaluate our method against U-net and GAN-based approaches, and demonstrate its superior performance.

This research work has been supported by project TED2021-129162B-C22, funded by the Recovery and Resilience Facility program from the NextGenerationEU and the Spanish Research Agency (Agencia Estatal de Investigación); and PID2021-128362OB-I00, funded by the Spanish Plan for Scientific and Technical Research and Innovation of the Spanish Research Agency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arora, S., Doshi, P.: A survey of inverse reinforcement learning: challenges, methods and progress. Artif. Intell. 297, 103500 (2021). https://doi.org/10.1016/j.artint.2021.103500

    Article  MathSciNet  MATH  Google Scholar 

  2. Balayev, K., Guluzade, N., Aygün, S., İlhan, H.O.: The implementation of DCGAN in the data augmentation for the sperm morphology datasets. Avrupa Bilim ve Teknoloji Dergisi 26, 307–314 (2021)

    Google Scholar 

  3. Bhattacharyya, R., et al.: Modeling human driving behavior through generative adversarial imitation learning. IEEE Trans. Intell. Transp. Syst. 24(3), 2874–2887 (2023). https://doi.org/10.1109/TITS.2022.3227738

    Article  Google Scholar 

  4. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  5. Choi, S., Kim, J., Yeo, H.: Trajgail: generating urban vehicle trajectories using generative adversarial imitation learning. Transp. Res. Part C: Emerg. Technol. 128, 103091 (2021). https://doi.org/10.1016/j.trc.2021.103091

    Article  Google Scholar 

  6. Coates, A., Abbeel, P., Ng, A.Y.: Apprenticeship learning for helicopter control. Commun. ACM 52(7), 97–105 (2009)

    Article  Google Scholar 

  7. Dai, C., et al.: Advances in sperm analysis: techniques, discoveries and applications. Nat. Rev. Urology 18(8), 447–467 (2021)

    Article  MathSciNet  Google Scholar 

  8. Gauthier, J.: Conditional generative adversarial nets for convolutional face generation. Class Project Stanford CS231N: Convolutional Neural Netw. Vis. Recogn. Winter Semester 2014(5), 2 (2014)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  11. Hernández-Ferrándiz, D., Pantrigo, J.J., Cabido, R.: SCASA: from synthetic to real computer-aided sperm analysis. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds.) Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence, pp. 233–242. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-06527-9_23

    Chapter  Google Scholar 

  12. Hidayatullah, P., Mengko, T., Munir, R., Barlian, A.: A semiautomatic dataset generator for convolutional neural network. In: Proceedings of the International Conference on Electrical Engineering & Computer Science (ICEECS 2018), pp. 17–21 (2018)

    Google Scholar 

  13. Hidayatullah, P., Mengko, T.L.E.R., Munir, R., Barlian, A.: Bull sperm tracking and machine learning-based motility classification. IEEE Access 9, 61159–61170 (2021). https://doi.org/10.1109/ACCESS.2021.3074127

    Article  Google Scholar 

  14. Hidayatullah, P., et al.: Deepsperm: a robust and real-time bull sperm-cell detection in densely populated semen videos. Comput. Methods Programs Biomed. 209, 106302 (2021)

    Article  Google Scholar 

  15. Ho, J., Ermon, S.: Generative adversarial imitation learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  16. Kim, B., Pineau, J.: Socially adaptive path planning in human environments using inverse reinforcement learning. Int. J. Soc. Rob. 8, 51–66 (2016)

    Article  Google Scholar 

  17. Kretzschmar, H., Spies, M., Sprunk, C., Burgard, W.: Socially compliant mobile robot navigation via inverse reinforcement learning. Int. J. Rob. Res. 35(11), 1289–1307 (2016). https://doi.org/10.1177/0278364915619772

    Article  Google Scholar 

  18. Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014). https://doi.org/10.48550/ARXIV.1411.1784

  19. Paul, D., Tewari, A., Jeong, J., Banerjee, I.: Boosting classification accuracy of fertile sperm cell images leveraging cdcgan. In: ICLR, 2021 (2021)

    Google Scholar 

  20. Rafailov, R., Yu, T., Rajeswaran, A., Finn, C.: Visual adversarial imitation learning using variational models. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 3016–3028. Curran Associates, Inc. (2021)

    Google Scholar 

  21. Riordon, J., McCallum, C., Sinton, D.: Deep learning for the classification of human sperm. Comput. Biol. Med. 111, 103342 (2019). https://doi.org/10.1016/j.compbiomed.2019.103342

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Rubin, M., et al.: TOP-GAN: stain-free cancer cell classification using deep learning with a small training set. Med. Image Anal. 57, 176–185 (2019). https://doi.org/10.1016/j.media.2019.06.014

    Article  Google Scholar 

  24. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  25. Sun, M., Devlin, S., Hofmann, K., Whiteson, S.: Deterministic and discriminative imitation (d2-imitation): revisiting adversarial imitation for sample efficiency. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8378–8385 (2022)

    Google Scholar 

  26. Wu, E., Wu, K., Cox, D., Lotter, W.: Conditional infilling GANs for data augmentation in mammogram classification. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 98–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_11

    Chapter  Google Scholar 

  27. Xiao, H., Herman, M., Wagner, J., Ziesche, S., Etesami, J., Linh, T.H.: Wasserstein adversarial imitation learning. arXiv preprint arXiv:1906.08113 (2019)

  28. Yüzkat, M., Ilhan, H.O., Aydin, N.: Multi-model CNN fusion for sperm morphology analysis. Comput. Biol. Med. 137, 104790 (2021). https://doi.org/10.1016/j.compbiomed.2021.104790

    Article  Google Scholar 

  29. Zeng, Q., Ma, X., Cheng, B., Zhou, E., Pang, W.: GANs-based data augmentation for citrus disease severity detection using deep learning. IEEE Access 8, 172882–172891 (2020). https://doi.org/10.1109/ACCESS.2020.3025196

    Article  Google Scholar 

  30. Ziebart, B.D., Maas, A.L., Bagnell, J.A., Dey, A.K., et al.: Maximum entropy inverse reinforcement learning. In: AAAI, Chicago, IL, USA, vol. 8, pp. 1433–1438 (2008)

    Google Scholar 

  31. Ziebart, B.D., Maas, A.L., Dey, A.K., Bagnell, J.A.: Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 322–331 (2008)

    Google Scholar 

  32. Zuo, G., Chen, K., Lu, J., Huang, X.: Deterministic generative adversarial imitation learning. Neurocomputing 388, 60–69 (2020). https://doi.org/10.1016/j.neucom.2020.01.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Hernández-García .

Editor information

Editors and Affiliations

Appendix

Appendix

In this section we detail the network architectures

GAIL.  We use a PPO agent as a generator and a CCN as a discriminator.

  • PPO   is an actor-critic RL agent that comprises two neural networks referred to as the actor and the critic. Both networks shared the same backbone, consisting of two convolutional layers alternated with max pooling layers, followed by flatten and passed through a hidden dense layer with ReLU activation. The actor network estimates the policy \(\pi _\theta \) so its output layer comprises five dense neurons with tanh activation. The critic network evaluates the actor’s decisions, so its output layer just has one neuron with linear activation.

  • Discriminator   is similar to the critic but with a sigmoid activation at the output. To prevent overfitting we incorporate dropout after each convolutional and dense layer.

WGAN.  It has the conventional architecture.

  • Generator   has an input layer of size \(100\times 1\) followed by three transposed convolution layers. We alternate these layers with batch normalization and ReLU activation.

  • Discriminator   has an input layer of size \(28\times 28\). Then, it has the same architecture as GAIL’s discriminator but with three convolutional layers with a single dense neuron with linear activation at the output.

U-Net.  It receives an input tensor of size \(5\times 28\times 28\) corresponding to the five preceding frames, \([s_{t-4},\ldots , s_t]\). Then, it compresses the input tensor using four convolutions to a size of \(64\!\times 4\!\times 4\). The image reconstruction is made by three successive transposed convolutions, resulting in an output tensor of size \(1\times \!28\!\times 28\), corresponding to the next frame \(s_{t+1}\). All hidden activations are ReLU.

CWGAN.  We use the same U-Net architecture for the generator and a CNN-based discriminator.

  • Generator   produces an image for \(s_{t+1}\) conditioned on the input in \(s_t\).

  • Discriminator   has an input layer of \(6\!\times 28\!\times 28\), corresponding to the five preceding frames concatenated with the one predicted by the generator. The architecture is the same than WGAN’s Discriminator.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hernández-García, S., Cuesta-Infante, A., Montemayor, A.S. (2023). Synthetic Spermatozoa Video Sequences Generation Using Adversarial Imitation Learning. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36616-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36615-4

  • Online ISBN: 978-3-031-36616-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics