Abstract
Increasing road safety has been a society’s goal since the automobile’s invention. One safety aspect that has not been the focus of research so far is that of a loose wheel. Potential accidents could be prevented with the help of early detection of loose wheel bolts. This work investigates how acceleration sensors in the chassis can be used to detect loose wheel bolts. Test drives with tightened and loosened wheel bolts were carried out. Several state-of-the-art semi-supervised anomalous sound detection algorithms are trained on the test drive data. Evaluation and optimization of anomalous sound detection algorithms shows that loose wheel bolts can be reliably detected when at least three out of five wheel bolts are loose. Our study indicates that acoustic preprocessing and careful selection of acoustic features is crucial for performance and more important than the choice of a special algorithm for detecting loose wheel bolts.
Supported by ZF Friedrichshafen AG.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/s10618-016-0483-9
Bernhard, J., Schmidt, J., Schutera, M.: Density based anomaly detection for wind turbine condition monitoring. In: Proceedings of the 1st International Joint Conference on Energy and Environmental Engineering - CoEEE, pp. 87–93. INSTICC, SciTePress (2022). https://doi.org/10.5220/0011358600003355
Braei, M., Wagner, S.: Anomaly detection in univariate time-series: a survey on the state-of-the-art. CoRR (2020). https://doi.org/10.48550/arXiv.2004.00433
Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 233–240. Association for Computing Machinery, New York (2006). https://doi.org/10.1145/1143844.1143874
Dodd, M.: Heavy vehicle wheel detachment and possible solutions-phase 2-final report (2010)
Dohi, K., et al.: Description and discussion on DCASE 2022 challenge task 2: unsupervised anomalous sound detection for machine condition monitoring applying domain generalization techniques (2022). https://doi.org/10.48550/ARXIV.2206.05876
Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. In: Proceedings of the International Conference on Learning Representations (2019). https://doi.org/10.48550/ARXIV.1812.04606
Hägg, J.: Loose wheel indicator selected by Audi for a range of car models (2019). https://www.mynewsdesk.com/se/nira-dynamics/pressreleases/loose-wheel-indicator-selected-by-audi-for-a-range-of-car-models-2966123
Straßenverkehrs-ordnung (stvo) §23 sonstige pflichten von fahrzeugführenden (2013). https://www.gesetze-im-internet.de/stvo_2013/_23.html. Accessed 04 Mar 2023
Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 580–585 (1985)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://doi.org/10.48550/ARXIV.1412.6980
Koizumi, Y., et al.: Description and discussion on DCASE2020 challenge task2: unsupervised anomalous sound detection for machine condition monitoring (2020). https://doi.org/10.48550/ARXIV.2006.05822
Krishna, K., Murty, M.N.: Genetic k-means algorithm. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 433–439 (1999)
Verordnung über sicherheit und gesundheitsschutz bei der verwendung von arbeitsmitteln (betriebssicherheitsverordnung - betrsichv) §4 grundpflichten des arbeitgebers (2015). https://www.gesetze-im-internet.de/betrsichv_2015/_4.html. Accessed 04 Mar 2023
Logan, B.: Mel frequency cepstral coefficients for music modeling. In: International Society for Music Information Retrieval Conference (2000)
Lyon, D.A.: The discrete Fourier transform, part 4: spectral leakage. J. Object Technol. 23–34 (2009). https://doi.org/10.5381/jot.2009.8.7.c2
Malhotra, P., Vig, L., Shroff, G., Agarwal, P., et al.: Long short term memory networks for anomaly detection in time series. In: Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (2015)
Nannavecchia, A., Girardi, F., Fina, P.R., Scalera, M., Dimauro, G.: Personal heart health monitoring based on 1D convolutional neural network. J. Imaging (2021)
O’Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRR (2015). https://doi.org/10.48550/arXiv.1511.08458
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks (2018). https://doi.org/10.48550/ARXIV.1801.04381
Schmidl, S., Wenig, P., Papenbrock, T.: Anomaly detection in time series: a comprehensive evaluation. Proc. VLDB Endow. 1779–1797 (2022). https://doi.org/10.14778/3538598.3538602
Smith, J.O.: Mathematics of the Discrete Fourier Transform (DFT): With Audio Applications. BookSurge Publishing (2008)
Socoró, J.C., Alías, F., Alsina-Pagés, R.M.: An anomalous noise events detector for dynamic road traffic noise mapping in real-life urban and suburban environments. Sensors 17(10) (2017). https://doi.org/10.3390/s17102323
Suefusa, K., Nishida, T., Purohit, H., Tanabe, R., Endo, T., Kawaguchi, Y.: Anomalous sound detection based on interpolation deep neural network. In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2020, pp. 271–275 (2020). https://doi.org/10.1109/ICASSP40776.2020.9054344
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Schmidt, J., Kühnberger, KU., Pape, D., Pobandt, T. (2023). Detecting Loose Wheel Bolts of a Vehicle Using Accelerometers in the Chassis. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_53
Download citation
DOI: https://doi.org/10.1007/978-3-031-36616-1_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36615-4
Online ISBN: 978-3-031-36616-1
eBook Packages: Computer ScienceComputer Science (R0)