Skip to main content

Detecting Loose Wheel Bolts of a Vehicle Using Accelerometers in the Chassis

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14062))

Included in the following conference series:

  • 1233 Accesses

Abstract

Increasing road safety has been a society’s goal since the automobile’s invention. One safety aspect that has not been the focus of research so far is that of a loose wheel. Potential accidents could be prevented with the help of early detection of loose wheel bolts. This work investigates how acceleration sensors in the chassis can be used to detect loose wheel bolts. Test drives with tightened and loosened wheel bolts were carried out. Several state-of-the-art semi-supervised anomalous sound detection algorithms are trained on the test drive data. Evaluation and optimization of anomalous sound detection algorithms shows that loose wheel bolts can be reliably detected when at least three out of five wheel bolts are loose. Our study indicates that acoustic preprocessing and careful selection of acoustic features is crucial for performance and more important than the choice of a special algorithm for detecting loose wheel bolts.

Supported by ZF Friedrichshafen AG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/s10618-016-0483-9

    Article  MathSciNet  Google Scholar 

  2. Bernhard, J., Schmidt, J., Schutera, M.: Density based anomaly detection for wind turbine condition monitoring. In: Proceedings of the 1st International Joint Conference on Energy and Environmental Engineering - CoEEE, pp. 87–93. INSTICC, SciTePress (2022). https://doi.org/10.5220/0011358600003355

  3. Braei, M., Wagner, S.: Anomaly detection in univariate time-series: a survey on the state-of-the-art. CoRR (2020). https://doi.org/10.48550/arXiv.2004.00433

  4. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, pp. 233–240. Association for Computing Machinery, New York (2006). https://doi.org/10.1145/1143844.1143874

  5. Dodd, M.: Heavy vehicle wheel detachment and possible solutions-phase 2-final report (2010)

    Google Scholar 

  6. Dohi, K., et al.: Description and discussion on DCASE 2022 challenge task 2: unsupervised anomalous sound detection for machine condition monitoring applying domain generalization techniques (2022). https://doi.org/10.48550/ARXIV.2206.05876

  7. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. In: Proceedings of the International Conference on Learning Representations (2019). https://doi.org/10.48550/ARXIV.1812.04606

  8. Hägg, J.: Loose wheel indicator selected by Audi for a range of car models (2019). https://www.mynewsdesk.com/se/nira-dynamics/pressreleases/loose-wheel-indicator-selected-by-audi-for-a-range-of-car-models-2966123

  9. Straßenverkehrs-ordnung (stvo) §23 sonstige pflichten von fahrzeugführenden (2013). https://www.gesetze-im-internet.de/stvo_2013/_23.html. Accessed 04 Mar 2023

  10. Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 580–585 (1985)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://doi.org/10.48550/ARXIV.1412.6980

  12. Koizumi, Y., et al.: Description and discussion on DCASE2020 challenge task2: unsupervised anomalous sound detection for machine condition monitoring (2020). https://doi.org/10.48550/ARXIV.2006.05822

  13. Krishna, K., Murty, M.N.: Genetic k-means algorithm. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 433–439 (1999)

    Google Scholar 

  14. Verordnung über sicherheit und gesundheitsschutz bei der verwendung von arbeitsmitteln (betriebssicherheitsverordnung - betrsichv) §4 grundpflichten des arbeitgebers (2015). https://www.gesetze-im-internet.de/betrsichv_2015/_4.html. Accessed 04 Mar 2023

  15. Logan, B.: Mel frequency cepstral coefficients for music modeling. In: International Society for Music Information Retrieval Conference (2000)

    Google Scholar 

  16. Lyon, D.A.: The discrete Fourier transform, part 4: spectral leakage. J. Object Technol. 23–34 (2009). https://doi.org/10.5381/jot.2009.8.7.c2

  17. Malhotra, P., Vig, L., Shroff, G., Agarwal, P., et al.: Long short term memory networks for anomaly detection in time series. In: Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (2015)

    Google Scholar 

  18. Nannavecchia, A., Girardi, F., Fina, P.R., Scalera, M., Dimauro, G.: Personal heart health monitoring based on 1D convolutional neural network. J. Imaging (2021)

    Google Scholar 

  19. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRR (2015). https://doi.org/10.48550/arXiv.1511.08458

  20. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks (2018). https://doi.org/10.48550/ARXIV.1801.04381

  21. Schmidl, S., Wenig, P., Papenbrock, T.: Anomaly detection in time series: a comprehensive evaluation. Proc. VLDB Endow. 1779–1797 (2022). https://doi.org/10.14778/3538598.3538602

  22. Smith, J.O.: Mathematics of the Discrete Fourier Transform (DFT): With Audio Applications. BookSurge Publishing (2008)

    Google Scholar 

  23. Socoró, J.C., Alías, F., Alsina-Pagés, R.M.: An anomalous noise events detector for dynamic road traffic noise mapping in real-life urban and suburban environments. Sensors 17(10) (2017). https://doi.org/10.3390/s17102323

  24. Suefusa, K., Nishida, T., Purohit, H., Tanabe, R., Endo, T., Kawaguchi, Y.: Anomalous sound detection based on interpolation deep neural network. In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2020, pp. 271–275 (2020). https://doi.org/10.1109/ICASSP40776.2020.9054344

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmidt, J., Kühnberger, KU., Pape, D., Pobandt, T. (2023). Detecting Loose Wheel Bolts of a Vehicle Using Accelerometers in the Chassis. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36616-1_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36615-4

  • Online ISBN: 978-3-031-36616-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics