Skip to main content

Learning Semantic-Visual Embeddings with a Priority Queue

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14062))

Included in the following conference series:

  • 759 Accesses

Abstract

The Stochastic Gradient Descent (SGD) algorithm and margin-based loss functions have been the learning workhorse of choice to train deep metric learning networks. Often, the random nature of SGD will lead to the selection of sub-optimal mini-batches, several orders of magnitude smaller than the larger dataset. In this paper, we propose to augment SGD mini-batch with a priority learning queue, i.e., SGD+PQ. While the mini-batch SGD replaces all learning samples in the mini-batch at each iteration, the proposed priority queue replaces samples by removing the less informative ones. This novel idea introduces a sample update strategy that balances two sample removal criterion: (i) removal of stale samples from the PQ that are likely outdated, and (ii) removal of samples that are not contributing to the error, i.e. their sample error is not changing during training. Experimental results demonstrate the success of the proposed approach across three datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/rcvalerio/Priority-Queue.

References

  1. Cakir, F., He, K., Xia, X., Kulis, B., Sclaroff, S.: Deep metric learning to rank. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1861–1870 (2019)

    Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  3. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  4. El-Nouby, A., Neverova, N., Laptev, I., Jégou, H.: Training vision transformers for image retrieval. arXiv preprint arXiv:2102.05644 (2021)

  5. Gao, L., Dai, Z., Fan, Z., Callan, J.: Complementing lexical retrieval with semantic residual embedding. arXiv preprint arXiv:2004.13969 (2020)

  6. Gao, L., Zhang, Y., Han, J., Callan, J.: Scaling deep contrastive learning batch size under memory limited setup. In: Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp. 316–321 (2021)

    Google Scholar 

  7. Ge, W.: Deep metric learning with hierarchical triplet loss. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 269–285 (2018)

    Google Scholar 

  8. Goyal, P., et al.: Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)

  9. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742 (2006). https://doi.org/10.1109/CVPR.2006.100. https://ieeexplore.ieee.org/abstract/document/1640964

  10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification (2017)

    Google Scholar 

  13. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 84–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24261-3_7

    Chapter  Google Scholar 

  14. Kim, S., Kim, D., Cho, M., Kwak, S.: Proxy anchor loss for deep metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3238–3247 (2020)

    Google Scholar 

  15. Kim, W., Goyal, B., Chawla, K., Lee, J., Kwon, K.: Attention-based ensemble for deep metric learning. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 736–751 (2018)

    Google Scholar 

  16. Li, S., Chen, D., Liu, B., Yu, N., Zhao, R.: Memory-based neighbourhood embedding for visual recognition. In: The IEEE International Conference on Computer Vision (ICCV), pp. 6102–6111 (2019)

    Google Scholar 

  17. Lin, T., Kong, L., Stich, S., Jaggi, M.: Extrapolation for large-batch training in deep learning. In: International Conference on Machine Learning, pp. 6094–6104. PMLR (2020)

    Google Scholar 

  18. Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.: Deep gradient compression: Reducing the communication bandwidth for distributed training (2018). https://openreview.net/pdf?id=SkhQHMW0W

  19. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: Deepfashion: powering robust clothes recognition and retrieval with rich annotations. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  20. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  21. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss distance metric learning using proxies. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 360–368 (2017)

    Google Scholar 

  22. Musgrave, K., Belongie, S., Lim, S.-N.: A metric learning reality check. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 681–699. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_41

    Chapter  Google Scholar 

  23. Oh Song, H., Jegelka, S., Rathod, V., Murphy, K.: Deep metric learning via facility location. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5382–5390 (2017)

    Google Scholar 

  24. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4004–4012 (2016)

    Google Scholar 

  25. Opitz, M., Waltner, G., Possegger, H., Bischof, H.: Deep metric learning with bier: boosting independent embeddings robustly. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 276–290 (2018)

    Article  Google Scholar 

  26. Qian, Q., Shang, L., Sun, B., Hu, J., Li, H., Jin, R.: Softtriple loss: deep metric learning without triplet sampling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6450–6458 (2019)

    Google Scholar 

  27. Roth, K., Brattoli, B., Ommer, B.: Mic: mining interclass characteristics for improved metric learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8000–8009 (2019)

    Google Scholar 

  28. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  29. Sanakoyeu, A., Tschernezki, V., Buchler, U., Ommer, B.: Divide and conquer the embedding space for metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 471–480 (2019)

    Google Scholar 

  30. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: CVPR, pp. 815–823. IEEE Computer Society (2015). http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#SchroffKP15

  31. Semedo, D., Magalhães, J.: Cross-Modal Subspace Learning with Scheduled Adaptive Margin Constraints (2019). https://doi.org/10.1145/3343031.3351030

  32. Smith, S.L., Kindermans, P.J., Ying, C., Le, Q.V.: Don’t decay the learning rate, increase the batch size. In: International Conference on Learning Representations (2018)

    Google Scholar 

  33. Suh, Y., Han, B., Kim, W., Lee, K.M.: Stochastic class-based hard example mining for deep metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7251–7259 (2019)

    Google Scholar 

  34. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  35. Wang, X., Han, X., Huang, W., Dong, D., Scott, M.R.: Multi-similarity loss with general pair weighting for deep metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5022–5030 (2019)

    Google Scholar 

  36. Wang, X., Zhang, H., Huang, W., Scott, M.R.: Cross-batch memory for embedding learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6388–6397 (2020)

    Google Scholar 

  37. Wohlhart, P., Lepetit, V.: Learning descriptors for object recognition and 3d pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3109–3118 (2015)

    Google Scholar 

  38. Wu, C.Y., Manmatha, R., Smola, A.J., Krahenbuhl, P.: Sampling matters in deep embedding learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2840–2848 (2017)

    Google Scholar 

  39. Wu, Z., Efros, A.A., Yu, S.X.: Improving generalization via scalable neighborhood component analysis. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 685–701 (2018)

    Google Scholar 

  40. Yuan, Y., Yang, K., Zhang, C.: Hard-aware deeply cascaded embedding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 814–823 (2017)

    Google Scholar 

  41. Zhong, Z., Zheng, L., Luo, Z., Li, S., Yang, Y.: Invariance matters: exemplar memory for domain adaptive person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 598–607 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by the FCT project NOVA LINCS (UIDP/04516/2020), and the CMU Portugal project iFetch (LISBOA-01-0247-FEDER-045920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Valério .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valério, R., Magalhães, J. (2023). Learning Semantic-Visual Embeddings with a Priority Queue. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36616-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36615-4

  • Online ISBN: 978-3-031-36616-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics