Abstract
The remarkable performance of deep learning models is heavily dependent on the availability of large and diverse amounts of training data and its correlation with the target application scenario. This is especially crucial in robotics, where the deployment environments often differ from the training ones. Domain generalization (DG) techniques investigate this problem by leveraging data from multiple source domains so that a trained model can generalize to unseen domains. In this work, we thoroughly evaluate the performance in the classification of kitchen utensils of several state-of-the-art DG methods. Extensive experiments on the seven domains that compose the Kurcuma (Kitchen Utensil Recognition Collection for Unsupervised doMain Adaptation) dataset show that the effectiveness of some of the DG methods varies across domains, with none performing well across all of them. Specifically, most methods achieved high accuracy rates in four of the seven datasets, and while there was a reasonable improvement in the most difficult domains, there is still ample room for further research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)
Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)
Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: towards domain generalization using meta-regularization. Adv. Neural Inf. Process. Syst. 31 (2018)
Blanchard, G., Deshmukh, A.A., Dogan, Ü., Lee, G., Scott, C.: Domain generalization by marginal transfer learning. J. Mach. Learn. Res. 22(1), 46–100 (2021)
Borlino, F.C., D’Innocente, A., Tommasi, T.: Rethinking domain generalization baselines. In: International Conference on Pattern Recognition, pp. 9227–9233. IEEE (2021)
Bousmalis, K., et al.: Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In: IEEE International Conference on Robotics and Automation, pp. 4243–4250. IEEE (2018)
Bucci, S., D’Innocente, A., Liao, Y., Carlucci, F.M., Caputo, B., Tommasi, T.: Self-supervised learning across domains. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5516–5528 (2021)
Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2229–2238 (2019)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)
Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016)
Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: International Conference on Learning Representations (2021)
Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5149–5169 (2021)
Huang, Z., Wang, H., Xing, E.P., Huang, D.: Self-challenging improves cross-domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 124–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_8
Ilse, M., Tomczak, J.M., Louizos, C., Welling, M.: Diva: domain invariant variational autoencoders. In: Medical Imaging with Deep Learning, pp. 322–348. PMLR (2020)
Jia, Y., Zhang, J., Shan, S., Chen, X.: Single-side domain generalization for face anti-spoofing. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8484–8493 (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) International Conference on Learning Representations. San Diego, USA (2015)
Krueger, D., et al.: Out-of-distribution generalization via risk extrapolation (REx). In: International Conference on Machine Learning, pp. 5815–5826. PMLR (2021)
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: meta-learning for domain generalization. In: AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)
Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2018)
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. In: International Conference on Learning Representations (2016)
Ohri, K., Kumar, M.: Review on self-supervised image recognition using deep neural networks. Knowl.-Based Syst. 224, 107090 (2021)
Rosello, A., Valero-Mas, J.J., Gallego, A.J., Sáez-Pérez, J., Calvo-Zaragoza, J.: Kurcuma: a kitchen utensil recognition collection for unsupervised domain adaptation. Pattern Anal. Appl. 1–13 (2023)
Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neural networks for group shifts: on the importance of regularization for worst-case generalization. In: International Conference on Learning Representations (2020)
Shi, Y., Yu, X., Sohn, K., Chandraker, M., Jain, A.K.: Towards universal representation learning for deep face recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6817–6826 (2020)
Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35
Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2022). https://doi.org/10.1007/978-1-84882-935-0
Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)
Wang, H., He, Z., Lipton, Z.C., Xing, E.P.: Learning robust representations by projecting superficial statistics out. In: International Conference on Learning Representations (2019)
Wang, J., et al.: Generalizing to unseen domains: a survey on domain generalization. IEEE Trans. Knowl. Data Eng. (2022)
Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)
Wang, Z., Loog, M., Van Gemert, J.: Respecting domain relations: hypothesis invariance for domain generalization. In: International Conference on Pattern Recognition, pp. 9756–9763. IEEE (2021)
Wulfmeier, M., Bewley, A., Posner, I.: Incremental adversarial domain adaptation for continually changing environments. In: IEEE International Conference on Robotics and Automation, pp. 4489–4495. IEEE (2018)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)
Zhao, Y., et al.: Learning to generalize unseen domains via memory-based multi-source meta-learning for person re-identification. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6277–6286 (2021)
Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2022)
Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Learning to generate novel domains for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 561–578. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_33
Acknowledgments
This paper is part of the project I+D+i PID2020-118447RA-I00 (MultiScore), funded by MCIN/AEI/10.13039/501100011033. The first author is supported by grant CIACIF/2021/465 from “Programa I+D+i de la Generalitat Valenciana“. The second author is supported by grant FPU19/04957 from the Spanish Ministerio de Universidades.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Garrido-Munoz, C., Alfaro-Contreras, M., Calvo-Zaragoza, J. (2023). Evaluating Domain Generalization in Kitchen Utensils Classification. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-36616-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36615-4
Online ISBN: 978-3-031-36616-1
eBook Packages: Computer ScienceComputer Science (R0)