Skip to main content

Evaluating Domain Generalization in Kitchen Utensils Classification

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14062))

Included in the following conference series:

  • 1187 Accesses

Abstract

The remarkable performance of deep learning models is heavily dependent on the availability of large and diverse amounts of training data and its correlation with the target application scenario. This is especially crucial in robotics, where the deployment environments often differ from the training ones. Domain generalization (DG) techniques investigate this problem by leveraging data from multiple source domains so that a trained model can generalize to unseen domains. In this work, we thoroughly evaluate the performance in the classification of kitchen utensils of several state-of-the-art DG methods. Extensive experiments on the seven domains that compose the Kurcuma (Kitchen Utensil Recognition Collection for Unsupervised doMain Adaptation) dataset show that the effectiveness of some of the DG methods varies across domains, with none performing well across all of them. Specifically, most methods achieved high accuracy rates in four of the seven datasets, and while there was a reasonable improvement in the most difficult domains, there is still ample room for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  2. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)

  3. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: towards domain generalization using meta-regularization. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  4. Blanchard, G., Deshmukh, A.A., Dogan, Ü., Lee, G., Scott, C.: Domain generalization by marginal transfer learning. J. Mach. Learn. Res. 22(1), 46–100 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Borlino, F.C., D’Innocente, A., Tommasi, T.: Rethinking domain generalization baselines. In: International Conference on Pattern Recognition, pp. 9227–9233. IEEE (2021)

    Google Scholar 

  6. Bousmalis, K., et al.: Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In: IEEE International Conference on Robotics and Automation, pp. 4243–4250. IEEE (2018)

    Google Scholar 

  7. Bucci, S., D’Innocente, A., Liao, Y., Carlucci, F.M., Caputo, B., Tommasi, T.: Self-supervised learning across domains. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5516–5528 (2021)

    Google Scholar 

  8. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2229–2238 (2019)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  11. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  12. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: International Conference on Learning Representations (2021)

    Google Scholar 

  14. Hospedales, T., Antoniou, A., Micaelli, P., Storkey, A.: Meta-learning in neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5149–5169 (2021)

    Google Scholar 

  15. Huang, Z., Wang, H., Xing, E.P., Huang, D.: Self-challenging improves cross-domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 124–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_8

    Chapter  Google Scholar 

  16. Ilse, M., Tomczak, J.M., Louizos, C., Welling, M.: Diva: domain invariant variational autoencoders. In: Medical Imaging with Deep Learning, pp. 322–348. PMLR (2020)

    Google Scholar 

  17. Jia, Y., Zhang, J., Shan, S., Chen, X.: Single-side domain generalization for face anti-spoofing. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8484–8493 (2020)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) International Conference on Learning Representations. San Diego, USA (2015)

    Google Scholar 

  19. Krueger, D., et al.: Out-of-distribution generalization via risk extrapolation (REx). In: International Conference on Machine Learning, pp. 5815–5826. PMLR (2021)

    Google Scholar 

  20. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: meta-learning for domain generalization. In: AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  21. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: IEEE International Conference on Computer Vision, pp. 5542–5550 (2017)

    Google Scholar 

  22. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2018)

    Google Scholar 

  23. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. In: International Conference on Learning Representations (2016)

    Google Scholar 

  24. Ohri, K., Kumar, M.: Review on self-supervised image recognition using deep neural networks. Knowl.-Based Syst. 224, 107090 (2021)

    Article  Google Scholar 

  25. Rosello, A., Valero-Mas, J.J., Gallego, A.J., Sáez-Pérez, J., Calvo-Zaragoza, J.: Kurcuma: a kitchen utensil recognition collection for unsupervised domain adaptation. Pattern Anal. Appl. 1–13 (2023)

    Google Scholar 

  26. Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neural networks for group shifts: on the importance of regularization for worst-case generalization. In: International Conference on Learning Representations (2020)

    Google Scholar 

  27. Shi, Y., Yu, X., Sohn, K., Chandraker, M., Jain, A.K.: Towards universal representation learning for deep face recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6817–6826 (2020)

    Google Scholar 

  28. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  29. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2022). https://doi.org/10.1007/978-1-84882-935-0

    Book  MATH  Google Scholar 

  30. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  31. Wang, H., He, Z., Lipton, Z.C., Xing, E.P.: Learning robust representations by projecting superficial statistics out. In: International Conference on Learning Representations (2019)

    Google Scholar 

  32. Wang, J., et al.: Generalizing to unseen domains: a survey on domain generalization. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  33. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  34. Wang, Z., Loog, M., Van Gemert, J.: Respecting domain relations: hypothesis invariance for domain generalization. In: International Conference on Pattern Recognition, pp. 9756–9763. IEEE (2021)

    Google Scholar 

  35. Wulfmeier, M., Bewley, A., Posner, I.: Incremental adversarial domain adaptation for continually changing environments. In: IEEE International Conference on Robotics and Automation, pp. 4489–4495. IEEE (2018)

    Google Scholar 

  36. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  37. Zhao, Y., et al.: Learning to generalize unseen domains via memory-based multi-source meta-learning for person re-identification. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6277–6286 (2021)

    Google Scholar 

  38. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  39. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Learning to generate novel domains for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 561–578. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_33

    Chapter  Google Scholar 

Download references

Acknowledgments

This paper is part of the project I+D+i PID2020-118447RA-I00 (MultiScore), funded by MCIN/AEI/10.13039/501100011033. The first author is supported by grant CIACIF/2021/465 from “Programa I+D+i de la Generalitat Valenciana“. The second author is supported by grant FPU19/04957 from the Spanish Ministerio de Universidades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Garrido-Munoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garrido-Munoz, C., Alfaro-Contreras, M., Calvo-Zaragoza, J. (2023). Evaluating Domain Generalization in Kitchen Utensils Classification. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham. https://doi.org/10.1007/978-3-031-36616-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36616-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36615-4

  • Online ISBN: 978-3-031-36616-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics