Skip to main content

An Atomic Retrospective Learning Bare Bone Particle Swarm Optimization

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13968))

Included in the following conference series:

  • 383 Accesses

Abstract

In order to increase the diversity of bare-bone particle swarm optimization (BBPSO) population search range, enhance the ability to jump out of local optimum, we propose an atomic retrospective learning bare-bone particle swarm optimization (ARBBPSO) algorithm based on BBPSO. Different from the renewal strategy of BBPSO, inspired by electron motion around protons in ARBBPSO, we use a strategy of motion around nuclei to increase population diversity. At the same time, the retrospective learning strategy is used to allow the proton particles to have a chance to correct errors during the process of updating, thus allowing the population to have a chance to evade falling into a local optimum. To verify the performance of the proposed algorithm, 29 benchmark functions of CEC2017 are chosen to compare with four well-known BBPSO-based algorithms. The experimental results indicate that ARBBPSO is superior to several other algorithms for improving BBPSO from a comprehensive consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nonoyama, K., Liu, Z., Fujiwara, T., Alam, M.M., Nishi, T.: Energy-efficient robot configuration and motion planning using genetic algorithm and particle swarm optimization. Energies 15(6), 2074 (2022). https://doi.org/10.3390/en15062074

    Article  Google Scholar 

  2. Rossides, G., Metcalfe, B., Hunter, A.: Particle swarm optimization-an adaptation for the control of robotic swarms. Robotics 10(2), 58 (2021). https://doi.org/10.3390/robotics10020058

    Article  Google Scholar 

  3. Gbadega, P.A., Sun, Y.: A hybrid constrained particle swarm optimization-model predictive control (CPSO-MPC) algorithm for storage energy management optimization problem in micro-grid. Energy Rep. 8, 692–708 (2022). https://doi.org/10.1016/j.egyr.2022.10.035

    Article  Google Scholar 

  4. Li, W., Li, B., Guo, H.L., Fang, Y.X., Qiao, F.J., Zhou, S.W.: The ECG signal classification based on ensemble learning of PSO-ELM algorithm. Neural Netw. World 30(4), 265 (2020). https://doi.org/10.14311/NNW.2020.30.018

    Article  Google Scholar 

  5. Beheshti, Z., Shamsuddin, S.M.H., Beheshti, E., Yuhaniz, S.S.: Enhancement of artificial neural network learning using centripetal accelerated particle swarm optimization for medical diseases diagnosis. Soft. Comput. 18(11), 2253–2270 (2013). https://doi.org/10.1007/s00500-013-1198-0

    Article  Google Scholar 

  6. Kumar, M., Raman, J., Priya, P.: Particle swarm optimization. Int. J. Mater. Forming Mach. Process. 2(1), 54–87 (2015). https://doi.org/10.4018/ijmfmp.2015010104

    Article  Google Scholar 

  7. Beheshti, Z.: A novel x-shaped binary particle swarm optimization. Soft. Comput. 25(4), 3013–3042 (2020). https://doi.org/10.1007/s00500-020-05360-2

    Article  MATH  Google Scholar 

  8. Lu, J., Zhang, J., Sheng, J.: Enhanced multi-swarm cooperative particle swarm optimizer. Swarm Evol. Comput. 69(October 2021), 100989 (2022). https://doi.org/10.1016/j.swevo.2021.100989

    Article  Google Scholar 

  9. Zhang, Y., Ji, X. F., Gao, X.Z., Gong, D.W., Sun, X.Y.: Objective-constraint mutual-guided surrogate-based particle swarm optimization for expensive constrained multimodal problems. IEEE Trans. Evol. Comput. (2022). https://doi.org/10.1109/TEVC.2022.3182810

  10. Zeng, N., Wang, Z., Liu, W., Zhang, H., Hone, K., Liu, X.: A dynamic neighborhood-based switching particle swarm optimization algorithm. IEEE Trans. Cybern. 52(9), 9290–9301 (2022). https://doi.org/10.1109/TCYB.2020.3029748

    Article  Google Scholar 

  11. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, SIS 2003 (Cat. No.03EX706), vol. 729, pp. 80–87 (2003). https://doi.org/10.1109/SIS.2003.1202251

  12. Zhao, X., Liu, H., Liu, D., Ai, W., Zuo, X.: New modified bare-bones particle swarm optimization. In: 2016 IEEE Congress on Evolutionary Computation, CEC 2016, pp. 416–422 (2016). https://doi.org/10.1109/CEC.2016.7743824

  13. Tian, H., Guo, J., Xiao, H., Yan, K., Sato, Y.: An electronic transition-based bare bones particle swarm optimization algorithm for high dimensional optimization problems. PLoS ONE 17(7 July), 1–23 (2022). https://doi.org/10.1371/journal.pone.0271925

    Article  Google Scholar 

  14. Guo, J., Sato, Y.: A fission-fusion hybrid bare bones particle swarm optimization algorithm for single-objective optimization problems. Appl. Intell. 49(10), 3641–3651 (2019). https://doi.org/10.1007/s10489-019-01474-9

    Article  Google Scholar 

  15. Guo, J., Sato, Y.: A pair-wise bare bones particle swarm optimization algorithm for nonlinear functions. Int. J. Netw. Distrib. Comput. 5(3), 143–151 (2017). https://doi.org/10.2991/ijndc.2017.5.3.3

    Article  Google Scholar 

  16. Guo, J., Sato, Y.: A bare bones particle swarm optimization algorithm with dynamic local search. In: Tan, Y., Takagi, H., Shi, Y. (eds.) ICSI 2017. LNCS, vol. 10385, pp. 158–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61824-1_17

    Chapter  Google Scholar 

  17. Guo, J., Shi, B., Yan, K., Di, Y., Tang, J., Xiao, H., Sato, Y.: A twinning bare bones particle swarm optimization algorithm. PLoS ONE 17(5 May), 1–30 (2022). https://doi.org/10.1371/journal.pone.0267197

    Article  Google Scholar 

  18. Awad, N.H., Ali, M.Z., Liang, J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on real-parameter optimization. Nanyang Technology University, Singapore, Technical report, pp. 1–34 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, G., Guo, J., Yan, K., Zhou, G., Li, B. (2023). An Atomic Retrospective Learning Bare Bone Particle Swarm Optimization. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13968. Springer, Cham. https://doi.org/10.1007/978-3-031-36622-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36622-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36621-5

  • Online ISBN: 978-3-031-36622-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics