Skip to main content

A Bilevel Genetic Algorithm for Global Optimization Problems

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13968))

Included in the following conference series:

  • 593 Accesses

Abstract

Genetic algorithm is an important intelligent optimization algorithm that operates on specific population by simulating the natural evolution process and using artificial evolution to continuously optimize the population so as to search for the optimal solution. At present, there are a large number of methods focus on improving genetic algorithms, but the current stage of genetic algorithm tends to have the problems of falling into local optimal premature and slow convergence. In this paper, we try to design a bilevel evolutionary particle swarm optimization algorithm based on the idea of genetic algorithm within the framework but without increasing the complexity, using a data-driven idea, and verify it by the genetic algorithm in the commercial software MATLAB. Numerical experiments show that the data-driven a bilevel genetic algorithm-based algorithm significantly improves the algorithm performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holland John, H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  2. Li, L., Saldivar, A.A.F., Bai, Y., Chen, Y., Liu, Q., Li, Y.: Benchmarks for evaluating optimization algorithms and benchmarking MATLAB derivative-free optimizers for practitioners’ rapid access. IEEE Access 7, 79657–79670 (2019)

    Article  Google Scholar 

  3. Liu, Q., Zeng, J., Yang, G.: MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems. J. Global Optim. 62(2), 205–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu, Q., Yang, G., Zhang, Z., Zeng, J.: Improving the convergence rate of the DIRECT global optimization algorithm. J. Global Optim. 67(4), 851–872 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, Q., Zeng, J.: Global optimization by multilevel partition. J. Global Optim. 61(1), 47–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, Q., Cheng, W.: A modied DIRECT algorithm with bilevel partition. J. Global Optim. 60(3), 483–499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, Q., et al.: Benchmarking stochastic algorithms for global optimization problems by visualizing confidence intervals. IEEE Trans. Cybern. 47(9), 2924–2937 (2017)

    Article  Google Scholar 

  8. Yan, Y., Zhou, Q., Cheng, S., Liu, Q., Li, Y.: Bilevel-search particle swarm optimization for computationally expensive optimization problems. Soft Comput. 25, 14357–14374 (2021)

    Article  Google Scholar 

  9. Moré, J.J., Wild, S.M.: benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sun, J., Li, J., Wang, D., et al.: Thinned array optimization based on genetic model improved artificial bee colony algorithm. High Power Laser Part. Beams 33(12), 43–50 (2021)

    Google Scholar 

  11. Euziere, J., Guinvarc’h, R., Uguen, B., Gillard, R.: Optimization of sparse time-modulated array by genetic algorithm for radar applications. IEEE Antennas Wirel. Propag. Lett. 13, 161–164 (2014)

    Article  Google Scholar 

  12. Yan, Y., Liu, Q., Li, Y.: Paradox-free analysis for comparing the performance of optimization algorithms. IEEE Trans. Evol. Comput. (2022)

    Google Scholar 

  13. Jing, L., Cai, T.: Problem Definitions and Evaluation Criteria for the CEC Special Session on Evolutionary Algorithms for Sparse Optimization Technical Report. Nanyang Technological University, Singapore (2020)

    Google Scholar 

  14. Herrera, F., Herrera-Viedma, E., Lozano, M.: Fuzzy tools to improve genetic algorithms. Dept. Comput. Sci. Artif. Intell. (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunfeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lun, Z., Ye, Z., Liu, Q. (2023). A Bilevel Genetic Algorithm for Global Optimization Problems. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13968. Springer, Cham. https://doi.org/10.1007/978-3-031-36622-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36622-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36621-5

  • Online ISBN: 978-3-031-36622-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics