Skip to main content

Multi-objective Baby Search Algorithm

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13968))

Included in the following conference series:

  • 576 Accesses

Abstract

Multi-objective optimization problems are commonplace in real-world applications, and evolutionary algorithms are successful in solving them. Baby search algorithm is a novel evolutionary algorithm proposed recently, which has excellent ability on exploration and exploitation. However, it is designed to cater to single-objective optimization problems, but in this paper, we expand and modify it for multi-objective optimization. We introduce the boundary selection strategy to choose individuals from the Pareto archive for generating new solutions. To determine the best position of each individual we combine Pareto domination relation with random selection. Additionally, we propose an adapted Levy flight method to find promising solutions. Eleven standard multi-objective testing instances, five prevailing indicators and five state-of-art algorithms are applied to evaluate our algorithm. Experiments results demonstrate that our algorithm performs well on IGD, HV, Spread and GD measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma, S., Kumar, V.: A comprehensive review on multi-objective optimization techniques: past, present and future. Arch. Comput. Methods Eng. 29(7), 5605–5633 (2022). https://doi.org/10.1007/s11831-022-09778-9

    Article  Google Scholar 

  2. Liu, Y., Wang, Y., Ren, X., Zhou, H., Diao, X.: A classification method based on feature selection for imbalanced data. IEEE Access 7, 81794–81807 (2019)

    Article  Google Scholar 

  3. Liu, Y., Qin, W., Zhang, J., Li, M., Zheng, Q., Wang, J.: Multi-objective ant lion optimizer based on time weight. IEICE Trans. Inf. Syst. E104-D(6), 901–904 (2021)

    Google Scholar 

  4. Eduardo, F., Nelson, R.V., Laura, C.R., Claudia, G.G., Carlos, A.C.: Preference incorporation in MOEA/D using an outranking approach with imprecise model parameters. Swarm Evol. Comput. 72, 101097 (2022)

    Article  Google Scholar 

  5. Peng, W., lin, J., Zhang, J., Chen, L.: A bi-objective hierarchical program scheduling problem and its solution based on NSGA-III. Ann. Oper. Res. 308(1–2), 389–414 (2021). https://doi.org/10.1007/s10479-021-04106-z

    Article  MathSciNet  Google Scholar 

  6. Coello, C.A.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: 2002 Congress on Evolutionary Computation, Honolulu, USA, pp. 1051–1056. IEEE (2002)

    Google Scholar 

  7. Liu, Y., Li, M., Zheng, Q., Qin, W., Wang, J.: Baby search algorithm. In: 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering, Changsha, China, pp. 502–508. IEEE (2021)

    Google Scholar 

  8. Liu, Y., Zheng, Q., Li, G., Zhang, J., Ren, X., Qin, W.: Discrete baby search algorithm for combinatorial optimization problems. In: 2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, Xi’an, China, pp. 595–599. IEEE (2022)

    Google Scholar 

  9. Fang, W., Zhang, L., Yang, S., Sun, J., Wu, X.: A multiobjective evolutionary algorithm based on objective-space localization selection. IEEE Trans. Cybern. 49(7), 2732–2743 (2019)

    Article  Google Scholar 

  10. Liu, Y., Hu, Y., Zhu, N., Li, K., Zou, J., Li, M.: A decomposition-based multiobjective evolutionary algorithm with weights updated adaptively. Inf. Sci. 572, 343–377 (2021)

    Article  MathSciNet  Google Scholar 

  11. Pan, L., Li, L., Cheng, R., He, C., Kay, C.T.: Manifold learning-inspired mating restriction for evolutionary multiobjective optimization with complicated pareto sets. IEEE Trans. Cybern. 51(6), 3325–3337 (2021)

    Article  Google Scholar 

  12. Tian, Y., Zhang, X., Wang, C., Jin, Y.: An evolutionary algorithm for large-scale sparse multiobjective optimization problems. IEEE Trans. Evol. Comput. 24(2), 380–393 (2020)

    Article  Google Scholar 

  13. Long, J., Liu, J., Mei, J.: Combining global and local information for offspring generation in evolutionary multiobjective optimization. IEEE Access 9, 127471–127483 (2021)

    Article  Google Scholar 

  14. Liu, T., Tan, L., Li, X., Song, S.: Incremental learning-inspired mating restriction strategy for evolutionary multiobjective optimization. Appl. Soft Comput. 127, 109430 (2022)

    Article  Google Scholar 

  15. Zhao, C., Guo, D.: Particle swarm optimization algorithm with self-organizing mapping for Nash equilibrium strategy in application of multiobjective optimization. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 5179–5193 (2021)

    Article  Google Scholar 

  16. Wu, B., Hu, W., Hu, J., Gary, G.Y.: Adaptive multiobjective particle swarm optimization based on evolutionary state estimation. IEEE Trans. Cybern. 51(7), 3738–3751 (2021)

    Article  Google Scholar 

  17. Khalil, A., Du, W.: A fast multi-objective particle swarm optimization algorithm based on a new archive updating mechanism. IEEE Access 8, 124734–124754 (2020)

    Article  Google Scholar 

  18. Gao, X., Liu, T., Tan, L., Song, S.: Multioperator search strategy for evolutionary multiobjective optimization. Swarm Evol. Comput. 71, 101073 (2022)

    Article  Google Scholar 

  19. Falcón-Cardona, J.G., Ishibuchi, H., Coello, C.A.C., Emmerich, M.: On the effect of the cooperation of indicator-based multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 25(4), 681–695 (2021)

    Article  Google Scholar 

  20. Zhang, K., Shen, C., Liu, X., Gary, G.Y.: Multiobjective evolution strategy for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 24(5), 974–988 (2020)

    Article  Google Scholar 

  21. Liang, Z., Wu, T., Ma, X., Zhu, Z., Yang, S.: A dynamic multiobjective evolutionary algorithm based on decision variable classification. IEEE Trans. Cybern. 52(3), 1602–1615 (2020)

    Article  Google Scholar 

  22. Yuan, J., Liu, H., Ong, Y., He, Z.: Indicator-based evolutionary algorithm for solving constrained multiobjective optimization problems. IEEE Trans. Evol. Comput. 26(2), 379–391 (2022)

    Article  Google Scholar 

  23. Ming, M., Trivedi, A., Wang, R., Srnivasan, D., Zhang, T.: A dual-population-based evolutionary algorithm for constrained multiobjective optimization. IEEE Trans. Evol. Comput. 25(4), 739–753 (2021)

    Article  Google Scholar 

  24. Liu, Z., Wang, Y., Wang, B.: Indicator-based constrained multiobjective evolutionary algorithms. IEEE Trans. Syst. Man Cybern. Syst. 51(9), 5414–5426 (2021)

    Article  Google Scholar 

  25. Tahir, S., Humar, K.Ö.: Classification rule mining based on Pareto-based Multiobjective Optimization. Appl. Soft Comput. 127, 109321 (2022)

    Article  Google Scholar 

  26. Liu, G., Li, Y., Jiao, L., Chen, Y., Shang, R.: Multiobjective evolutionary algorithm assisted stacked autoencoder for PolSAR image classification. Swarm Evol. Comput. 60, 100794 (2021)

    Article  Google Scholar 

  27. Wang, S., Liu, J., Jin, Y.: A computationally efficient evolutionary algorithm for multiobjective network robustness optimization. IEEE Trans. Evol. Comput. 25(3), 419–432 (2021)

    Article  Google Scholar 

  28. Gustavo, A.P.M., Lucas, B.M., Filipe, M.B., Bruno, H.G.B., Marco, H.T., Valdir, G.J.: Robust path-following control design of heavy vehicles based on multiobjective evolutionary optimization. Expert Syst. Appl. 192, 116304 (2022)

    Article  Google Scholar 

  29. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutioanry algorithm. Swiss Federal Institute of Technology Zurich, Zurich, Switzerland (2001)

    Google Scholar 

  30. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  31. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  32. Seyedali, M., Shahrzad, S., Seyed, M.M., dos Leandro, S.C.: Multiobjective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47, 106–119 (2016)

    Article  Google Scholar 

  33. Mirjalili, S., Jangir, P., Saremi, S.: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 46(1), 79–95 (2016). https://doi.org/10.1007/s10489-016-0825-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qibin Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y. et al. (2023). Multi-objective Baby Search Algorithm. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13968. Springer, Cham. https://doi.org/10.1007/978-3-031-36622-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36622-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36621-5

  • Online ISBN: 978-3-031-36622-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics