Abstract
Multi-objective optimization problems are commonplace in real-world applications, and evolutionary algorithms are successful in solving them. Baby search algorithm is a novel evolutionary algorithm proposed recently, which has excellent ability on exploration and exploitation. However, it is designed to cater to single-objective optimization problems, but in this paper, we expand and modify it for multi-objective optimization. We introduce the boundary selection strategy to choose individuals from the Pareto archive for generating new solutions. To determine the best position of each individual we combine Pareto domination relation with random selection. Additionally, we propose an adapted Levy flight method to find promising solutions. Eleven standard multi-objective testing instances, five prevailing indicators and five state-of-art algorithms are applied to evaluate our algorithm. Experiments results demonstrate that our algorithm performs well on IGD, HV, Spread and GD measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Sharma, S., Kumar, V.: A comprehensive review on multi-objective optimization techniques: past, present and future. Arch. Comput. Methods Eng. 29(7), 5605–5633 (2022). https://doi.org/10.1007/s11831-022-09778-9
Liu, Y., Wang, Y., Ren, X., Zhou, H., Diao, X.: A classification method based on feature selection for imbalanced data. IEEE Access 7, 81794–81807 (2019)
Liu, Y., Qin, W., Zhang, J., Li, M., Zheng, Q., Wang, J.: Multi-objective ant lion optimizer based on time weight. IEICE Trans. Inf. Syst. E104-D(6), 901–904 (2021)
Eduardo, F., Nelson, R.V., Laura, C.R., Claudia, G.G., Carlos, A.C.: Preference incorporation in MOEA/D using an outranking approach with imprecise model parameters. Swarm Evol. Comput. 72, 101097 (2022)
Peng, W., lin, J., Zhang, J., Chen, L.: A bi-objective hierarchical program scheduling problem and its solution based on NSGA-III. Ann. Oper. Res. 308(1–2), 389–414 (2021). https://doi.org/10.1007/s10479-021-04106-z
Coello, C.A.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle swarm optimization. In: 2002 Congress on Evolutionary Computation, Honolulu, USA, pp. 1051–1056. IEEE (2002)
Liu, Y., Li, M., Zheng, Q., Qin, W., Wang, J.: Baby search algorithm. In: 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering, Changsha, China, pp. 502–508. IEEE (2021)
Liu, Y., Zheng, Q., Li, G., Zhang, J., Ren, X., Qin, W.: Discrete baby search algorithm for combinatorial optimization problems. In: 2022 3rd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, Xi’an, China, pp. 595–599. IEEE (2022)
Fang, W., Zhang, L., Yang, S., Sun, J., Wu, X.: A multiobjective evolutionary algorithm based on objective-space localization selection. IEEE Trans. Cybern. 49(7), 2732–2743 (2019)
Liu, Y., Hu, Y., Zhu, N., Li, K., Zou, J., Li, M.: A decomposition-based multiobjective evolutionary algorithm with weights updated adaptively. Inf. Sci. 572, 343–377 (2021)
Pan, L., Li, L., Cheng, R., He, C., Kay, C.T.: Manifold learning-inspired mating restriction for evolutionary multiobjective optimization with complicated pareto sets. IEEE Trans. Cybern. 51(6), 3325–3337 (2021)
Tian, Y., Zhang, X., Wang, C., Jin, Y.: An evolutionary algorithm for large-scale sparse multiobjective optimization problems. IEEE Trans. Evol. Comput. 24(2), 380–393 (2020)
Long, J., Liu, J., Mei, J.: Combining global and local information for offspring generation in evolutionary multiobjective optimization. IEEE Access 9, 127471–127483 (2021)
Liu, T., Tan, L., Li, X., Song, S.: Incremental learning-inspired mating restriction strategy for evolutionary multiobjective optimization. Appl. Soft Comput. 127, 109430 (2022)
Zhao, C., Guo, D.: Particle swarm optimization algorithm with self-organizing mapping for Nash equilibrium strategy in application of multiobjective optimization. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 5179–5193 (2021)
Wu, B., Hu, W., Hu, J., Gary, G.Y.: Adaptive multiobjective particle swarm optimization based on evolutionary state estimation. IEEE Trans. Cybern. 51(7), 3738–3751 (2021)
Khalil, A., Du, W.: A fast multi-objective particle swarm optimization algorithm based on a new archive updating mechanism. IEEE Access 8, 124734–124754 (2020)
Gao, X., Liu, T., Tan, L., Song, S.: Multioperator search strategy for evolutionary multiobjective optimization. Swarm Evol. Comput. 71, 101073 (2022)
Falcón-Cardona, J.G., Ishibuchi, H., Coello, C.A.C., Emmerich, M.: On the effect of the cooperation of indicator-based multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 25(4), 681–695 (2021)
Zhang, K., Shen, C., Liu, X., Gary, G.Y.: Multiobjective evolution strategy for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 24(5), 974–988 (2020)
Liang, Z., Wu, T., Ma, X., Zhu, Z., Yang, S.: A dynamic multiobjective evolutionary algorithm based on decision variable classification. IEEE Trans. Cybern. 52(3), 1602–1615 (2020)
Yuan, J., Liu, H., Ong, Y., He, Z.: Indicator-based evolutionary algorithm for solving constrained multiobjective optimization problems. IEEE Trans. Evol. Comput. 26(2), 379–391 (2022)
Ming, M., Trivedi, A., Wang, R., Srnivasan, D., Zhang, T.: A dual-population-based evolutionary algorithm for constrained multiobjective optimization. IEEE Trans. Evol. Comput. 25(4), 739–753 (2021)
Liu, Z., Wang, Y., Wang, B.: Indicator-based constrained multiobjective evolutionary algorithms. IEEE Trans. Syst. Man Cybern. Syst. 51(9), 5414–5426 (2021)
Tahir, S., Humar, K.Ö.: Classification rule mining based on Pareto-based Multiobjective Optimization. Appl. Soft Comput. 127, 109321 (2022)
Liu, G., Li, Y., Jiao, L., Chen, Y., Shang, R.: Multiobjective evolutionary algorithm assisted stacked autoencoder for PolSAR image classification. Swarm Evol. Comput. 60, 100794 (2021)
Wang, S., Liu, J., Jin, Y.: A computationally efficient evolutionary algorithm for multiobjective network robustness optimization. IEEE Trans. Evol. Comput. 25(3), 419–432 (2021)
Gustavo, A.P.M., Lucas, B.M., Filipe, M.B., Bruno, H.G.B., Marco, H.T., Valdir, G.J.: Robust path-following control design of heavy vehicles based on multiobjective evolutionary optimization. Expert Syst. Appl. 192, 116304 (2022)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutioanry algorithm. Swiss Federal Institute of Technology Zurich, Zurich, Switzerland (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Seyedali, M., Shahrzad, S., Seyed, M.M., dos Leandro, S.C.: Multiobjective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47, 106–119 (2016)
Mirjalili, S., Jangir, P., Saremi, S.: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 46(1), 79–95 (2016). https://doi.org/10.1007/s10489-016-0825-8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Y. et al. (2023). Multi-objective Baby Search Algorithm. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13968. Springer, Cham. https://doi.org/10.1007/978-3-031-36622-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-36622-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36621-5
Online ISBN: 978-3-031-36622-2
eBook Packages: Computer ScienceComputer Science (R0)