Skip to main content

Neural Architecture Search Based on Improved Brain Storm Optimization Algorithm

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13968))

Included in the following conference series:

  • 429 Accesses

Abstract

The performance of deep neural networks (DNNs) often depends on the design of their architectures. But designing a DNN with good performance is a difficult and knowledge-intensive process. In this paper, we propose a neural architecture search method based on improved brain storm optimization (BSO) algorithm to efficiently deal with image classification tasks. BSO successfully transposes the human brainstorming process to design of optimization algorithms, which typically uses grouping, substitution, and creation operators to generate as many solutions as possible to approach the global optimization of the problem generation by generation. However, the BSO algorithm using clustering methods for grouping increases the computational burden, so we use the BSO algorithm based on simple grouping methods to solve the optimal architecture of the neural architecture search (NAS). We also redesigned the search space and designed an efficient encoding strategy for each individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, N., Ma, L., Yu, G., et al.: Survey on evolutionary deep learning: principles, algorithms, applications and open issues. arXiv preprint arXiv:2208.10658 (2022)

  2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. IEEE (2016)

    Google Scholar 

  3. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  4. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  5. Zhang, Y., Chan, W., Jaitly, N.: Very deep convolutional networks for end-to-end speech recognition. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4845–4849. IEEE (2017)

    Google Scholar 

  6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  7. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

  8. Ma, L., Li, N., Yu, G., et al.: How to simplify search: classification-wise Pareto evolution for one-shot neural architecture search. arXiv preprint arXiv:2109.07582 (2021)

  9. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  Google Scholar 

  10. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  11. Bäck, T., Fogel, D.B., Michalewicz, Z.: Handbook of evolutionary computation. Release 97(1), B1 (1997)

    Google Scholar 

  12. Ma, L., Wang, X., Huang, M., et al.: A novel evolutionary root system growth algorithm for solving multi-objective optimization problems. Appl. Soft Comput. 57, 379–398 (2017)

    Article  Google Scholar 

  13. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Evolving deep convolutional neural networks for image classifification. IEEE Trans. Evol. Comput. 24(2), 394–407 (2020)

    Article  Google Scholar 

  14. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Completely automated CNN architecture design based on 9 blocks. IEEE Trans. Neural Netw. Learn. Syst. 31(4), 1242–1254 (2020)

    Article  MathSciNet  Google Scholar 

  15. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  16. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann Publishers Inc. (1998)

    Google Scholar 

  17. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  18. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  19. Tuba, E., Strumberger, I.: Classification and feature selection method for medical datasets by brain storm optimization algorithm and support vector machine. Procedia Comput. Sci. 162, 307–315 (2019)

    Article  Google Scholar 

  20. Ma, L., Wang, X., Huang, M., Lin, Z., Tian, L., Chen, H.: Two-level master-slave RFID networks planning via hybrid multiobjective artificial bee colony optimizer. IEEE Trans. Syst. Man Cybern.: Syst. 49(5), 861–880 (2019). https://doi.org/10.1109/TSMC.2017.2723483

    Article  Google Scholar 

  21. Ma, L., Hu, K., Zhu, Y., et al.: Discrete and continuous optimization based on hierarchical artificial bee colony optimizer. J. Appl. Math. 2014, 1–20 (2014). https://doi.org/10.1155/2014/402616

    Article  MATH  Google Scholar 

  22. Chen, H., Zhu, Y., Hu, K., et al.: Bacterial colony foraging algorithm: combining chemotaxis, cell-to-cell communication, and self-adaptive strategy. Inf. Sci. 273, 73–100 (2014)

    Article  MathSciNet  Google Scholar 

  23. Ma, L., Li, N., Guo, Y., et al.: Learning to optimize: reference vector reinforcement learning adaption to constrained many-objective optimization of industrial copper burdening system. IEEE Trans. Cybern. 52(12), 12698–12711 (2022). https://doi.org/10.1109/TCYB.2021.3086501

    Article  Google Scholar 

  24. Zhang, B., Wang, X., Ma, L., Huang, M.: Optimal controller placement problem in internet-oriented software defined network. In: 2016 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Chengdu, China, pp. 481–488 (2016). https://doi.org/10.1109/CyberC.2016.98

  25. Sun, Y., Yen, G.G., Yi, Z.: IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 23(2), 173–187 (2018)

    Article  Google Scholar 

  26. Xue, Y., Zhao, Y.: Structure and weights search for classification with feature selection based on brain storm optimization algorithm. Appl. Intell. 52(5), 5857–5866 (2022)

    Article  Google Scholar 

  27. Zeng, R., Su, M., Yu, R., Wang, X.: CD2: fine-grained 3D mesh reconstruction with twice chamfer distance. ACM Trans. Multimed. Comput. Commun. Appl. Just Accepted (2023). https://doi.org/10.1145/3582694

  28. Cheng, S., Zhang, M., Ma, L., Lu, H., Wang, R., Shi, Y.: Brain storm optimization algorithm for solving knowledge spillover problems. Neural Comput. Appl. 35, 12247–12260 (2021). https://doi.org/10.1007/s00521-020-05674-0

    Article  Google Scholar 

  29. Ma, L., Cheng, S., Shi, Y.: Enhancing learning efficiency of brain storm optimization via orthogonal learning design. IEEE Trans. Syst. Man Cybern.: Syst. 51(11), 6723–6742 (2020)

    Article  Google Scholar 

  30. Tran, B., Xue, B., Zhang, M.: A new representation in PSO for discretization-based feature selection. IEEE Trans. Cybern. 48(6), 1733–1746 (2017)

    Article  Google Scholar 

  31. Zhan, Z., Zhang, J., Shi, Y., et al.: A modified brain storm optimization. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)

    Google Scholar 

  32. Cheng, S.,Shi, Y., Qin, Q., et al.: Solution clustering analysis in brain storm optimization algorithm. In: Proceedings of the 2013 IEEE Symposium on Swarm Intelligence (SIS 2013), Singapore, pp. 111–118. IEEE (2013)

    Google Scholar 

  33. Sun, Y., Sun, X., Fang, Y., et al.: A novel training protocol for performance predictors of evolutionary neural architecture search algorithms. IEEE Trans. Evol. Comput. 25(3), 524–536 (2021)

    Article  Google Scholar 

  34. Shi, Y.: Brain storm optimization algorithm. In: Tan, Y., Shi, Y., Chai, Yi., Wang, G. (eds.) Advances in Swarm Intelligence, pp. 303–309. Springerg, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21515-5_36

    Chapter  Google Scholar 

  35. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimization for feature selection in classification: novel initialisation and updating mechanisms. Appl. Soft Comput. J. 18, 261–276 (2014)

    Article  Google Scholar 

  36. Xie, L., Yuille, A.: Genetic CNN. In: Proceedings of the IEEE International Conference on ComputerVision (ICCV), Venice, Italy, pp. 1388–1397 (2017)

    Google Scholar 

  37. Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecturesearch by network transformation. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, pp. 1–8 (2018)

    Google Scholar 

  38. Real, E., et al.: Large-scale evolution of image classifiers. In: Proceedings of the 34thInternational Conference on Machine Learning, pp. 2902–2911 (2017)

    Google Scholar 

  39. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once for all: train one network and specialize it for efficient deployment. In: International Conference on Learning Representations (2020)

    Google Scholar 

  40. Trofimov, I., Klyuchnikov, N., Salnikov, M., Filippov, A., Burnaev, E.: Multi-fidelity neural architecture search with knowledge distillation. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3234810

  41. Xie, X., Liu, Y., Sun, Y., et al.: Benchenas: a benchmarking platform for evolutionary neural architecture search. IEEE Trans. Evol. Comput. 26(6), 1473–1485 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Fundamental Research Funds for the Central Universities No. N2117005, the Joint Funds of the Natural Science Foundation of Liaoning Province und Grant 2021-KF-11-01 and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianbo Ma or Tiejun Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

An, X. et al. (2023). Neural Architecture Search Based on Improved Brain Storm Optimization Algorithm. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13968. Springer, Cham. https://doi.org/10.1007/978-3-031-36622-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36622-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36621-5

  • Online ISBN: 978-3-031-36622-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics