Skip to main content

Secondary Pulmonary Tuberculosis Lesions Detection Based on Improved YOLOv5 Networks

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13969))

Included in the following conference series:

  • 531 Accesses

Abstract

Tuberculosis (TB) is an infectious disease caused mainly by Mycobacterium tuberculosis. It has been reported that the mortality rate of TB is extremely high if not timely detected and diagnosed in early stages. Currently, the diagnosis of secondary pulmonary tuberculosis (PTB) relies heavily on subjective analysis by specialized radiologists, which is time-consuming and inefficient. Thus, the application of neural networks augmented with intelligent algorithm rules holds significant value in detecting secondary PTB. This paper proposes an algorithm based on an attention mechanism and a loss function-improved YOLOv5 neural network to accurately detect secondary PTB lesions with four specific features. Furthermore, a multi-scale data augmentation method is proposed to expand the lesion dataset, enhancing the generalization ability and robustness of the trained model. Experimental results demonstrate that our proposed method can effectively improve the detection accuracy and speed of secondary PTB lesions, achieving accurate recognition of secondary PTB lesions with the four specific features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rangaka, M.X., Cavalcante, S.C., Marais, B.J., Thim, S., et al.: Controlling the seedbeds of tuberculosis: diagnosis and treatment of tuberculosis infection. The Lancet. 386, 2344–2353 (2015)

    Article  Google Scholar 

  2. Chakaya, J., Khan, M., Ntoumi, F., Aklillu, E., et al.: Global Tuberculosis report 2020-reflections on the global TB burden, treatment and prevention efforts. Int. J. Infect. Dis. 113, S7–S12 (2021)

    Article  Google Scholar 

  3. Zhang, G., Jiang, S., Yang, Z., Gong, L., et al.: Automatic nodule detection for lung cancer in CT images: a review. Comput. Biol. Med. 103, 287–300 (2018)

    Article  Google Scholar 

  4. Wang, Y., Wu, B., Zhang, N., Liu, J., et al.: Research progress of computer aided diagnosis system for pulmonary nodules in CT images. J. X-Ray Sci. Technol. 28, 1–16 (2020)

    Google Scholar 

  5. Glenn jocher et al. Ultralytics/yolov5 v6.0 (2021). https://github.com/ultralytics/yolov5/ releases/tag/v6.0.

  6. Hwang, S., Kim, H.E., Jeong, J., Kim, H.J.: A novel approach for tuberculosis screening based on deep convolutional neural networks. In: Medical imaging 2016: Computer-aided Diagnosis, vol. 9785, pp. 750–757. Proc. SPIE, California (2016)

    Google Scholar 

  7. Lakhani, P., Sundaram, B.: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582 (2017)

    Article  Google Scholar 

  8. Gao, X.W., James-Reynolds, C., Currie, E.: Analysis of tuberculosis severity levels from CT pulmonary images based on enhanced residual deep learning architecture. Neurocomputing 392, 233–244 (2020)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE Press, Las Vegas (2016)

    Google Scholar 

  10. Li, X., Zhou, Y., Du, P., Lang, G., et al.: A deep learning system that generates quantitative CT reports for diagnosing pulmonary Tuberculosis. Appl. Intell. 51, 4082–4093 (2021)

    Article  Google Scholar 

  11. Yu, L., et al.: Automatic 3D cardiovascular MR segmentation with densely-connected volumetric ConvNets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 287–295. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_33

    Chapter  Google Scholar 

  12. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  13. Chen, J., Yang, L., Zhang, Y., Alber, M., et al.: Combining Fully Convolutional and Recurrent Neural Networks for 3D Biomedical Image Segmentation. In: Advances in Neural Information Processing Systems. 29 (2016)

    Google Scholar 

  14. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth International Conference on 3D Vision, pp. 565–571. IEEE Press, Stanford (2016)

    Google Scholar 

  15. Liu, Y., Shao, Z., Teng, Y., Hoffmann, N.: NAM: Normalization-based Attention Module. arXiv preprint arXiv. 2111.12419 (2021)

  16. Gevorgyan, Z.: SIoU Loss: More Powerful Learning for Bounding Box Regressiond. arXiv preprint arXiv. 2205.12740 (2022)

  17. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  19. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  20. Lin, T.Y., Goyal, P., Girshick, R., He, K., et al.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision, pp. 2999–3007. IEEE Press, Venice (2017)

    Google Scholar 

  21. Glenn jocher et al. Ultralytics/YOLOv8 (2023). https://github.com/ultralytics/ultralytics.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingli Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, H. et al. (2023). Secondary Pulmonary Tuberculosis Lesions Detection Based on Improved YOLOv5 Networks. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13969. Springer, Cham. https://doi.org/10.1007/978-3-031-36625-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36625-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36624-6

  • Online ISBN: 978-3-031-36625-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics