Skip to main content

EEG-Based Subject-Independent Depression Detection Using Dynamic Convolution and Feature Adaptation

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13969))

Included in the following conference series:

  • 654 Accesses

Abstract

Depression is a debilitating condition that can seriously impact quality of life, and existing clinical diagnoses are often complicated and dependent on physician experience. Recently, research on EEG-based major depressive disorder (MDD) detection has achieved good performance. However, subject-independent depression detection (i.e., diagnosis of a person never met) remains challenging due to large inter-subject discrepancies in EEG signal distribution. To address this, we propose an EEG-based depression detection model (DCAAN) that incorporates dynamic convolution, adversarial domain adaptation, and association domain adaptation. Dynamic convolution is introduced in the feature extractor to enhance model expression capability. Furthermore, to generalize the model across subjects, adversarial domain adaptation is used to achieve marginal distribution domain adaptation and association domain adaptation is used to achieve conditional distribution domain adaptation. Based on experimentation, our model achieved 86.85% accuracy in subject-independent MDD detection using the multimodal open mental disorder analysis (MODMA) dataset, confirming the considerable potential of the proposed method.

W. Jiang, N. Su—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadock, B,J., et al.: Kaplan & Sadock’s synopsis of psychiatry: behavioral sciences/clinical psychiatry, vol. 2015. Wolters Kluwer Philadelphia, PA (2015)

    Google Scholar 

  2. Edition, F., et al.: Diagnostic and statistical manual of mental disorders. Am. Psychiatric. Assoc. 21(21), 591–643 (2013)

    Google Scholar 

  3. Sharma, M., Achuth, P.V., Deb, D., Puthankattil, S.D., Acharya, U.R.: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with eeg signals. Cognit. Syst. Res. 52, 508–520 (2018)

    Article  Google Scholar 

  4. Bashir, N., Narejo, S., Naz, B., Ali, A.: EEG based major depressive disorder (MDD) detection using machine Learning. In: Djeddi, C., Siddiqi, I., Jamil, A., Ali Hameed, A., Kucuk, İ (eds.) MedPRAI 2021. CCIS, vol. 1543, pp. 172–183. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04112-9_13

    Chapter  Google Scholar 

  5. Song, X.W., Yan, D., Zhao, L., Yang, L.: Lsdd-eegnet: An efficient end-to-end framework for eeg-based depression detection. Biomed. Signal Process. Control 75, 103612 (2022)

    Google Scholar 

  6. Tasci, G., et al.: Automated accurate detection of depression using twin pascal’s triangles lattice pattern with eeg signals. Knowl.-Based Syst. 260, 110190 (2023)

    Article  Google Scholar 

  7. Chen, T., Guo, Y., Hao, S., Hong, R.: Exploring self-attention graph pooling with eeg-based topological structure and soft label for depression detection. IEEE Trans. Affect. Comput. 13(4), 2106–2118 (2022)

    Article  Google Scholar 

  8. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2020)

    Article  Google Scholar 

  9. Farahani, A., Voghoei, S., Rasheed, K., Arabnia, H.R.: A brief review of domain adaptation. In: Advances in Data Science and Information Engineering: Proceedings from ICDATA 2020 and IKE 2020, pp. 877–894 (2021)

    Google Scholar 

  10. Zhao, L.-M., Yan, X., Lu, B.-L.: Plug-and-play domain adaptation for cross-subject eeg-based emotion recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 863–870 (2021)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Chowdhury, A., Ross, A.: Fusing mfcc and lpc features using 1d triplet cnn for speaker recognition in severely degraded audio signals. IEEE Trans. Inf. Forensics Secur. 15, 1616–1629 (2019)

    Article  Google Scholar 

  13. Trelinski, J., Kwolek, B.: Embedded features for 1d cnn-based action recognition on depth maps. In: VISIGRAPP (4: VISAPP), pp. 536–543 (2021)

    Google Scholar 

  14. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1d convolutional neural networks and applications: a survey. Mech. Syst. Signal Process. 151, 107398 (2021)

    Google Scholar 

  15. Li, Y., Yuan, L., Chen, Y., Wang, P., Vasconcelos, N.: Dynamic transfer for multi-source domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10998–11007 (2021)

    Google Scholar 

  16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  17. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: Attention over convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11030–11039 (2020)

    Google Scholar 

  18. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  19. Li, H., Jin, Y.-M., Zheng, W.-L., Lu, B.-L.: Cross-subject emotion recognition using deep adaptation networks. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11305, pp. 403–413. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04221-9_36

    Chapter  Google Scholar 

  20. Hang, W., et al.: Cross-subject eeg signal recognition using deep domain adaptation network. IEEE Access 7, 128273–128282 (2019)

    Article  Google Scholar 

  21. Jin, Y.-M., Luo, Y.-D., Zheng, W.-L., Lu, B.-L.: Eeg-based emotion recognition using domain adaptation network. In: 2017 International Conference on Orange Technologies (ICOT), pp. 222–225. IEEE (2017)

    Google Scholar 

  22. Haeusser, P., Frerix, T., Mordvintsev, A., Cremers, D.: Associative domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2765–2773 (2017)

    Google Scholar 

  23. Cai, H., et al.: Modma dataset: a multi-modal open dataset for mental-disorder analysis. arXiv preprint arXiv:2002.09283 (2020)

  24. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. PMLR (2015)

    Google Scholar 

  25. Li, J., Rong, Y., Cheng, H., Meng, H., Huang, W., Huang, J.: Semi-supervised graph classification: A hierarchical graph perspective. In: The World Wide Web Conference, pp. 972–982 (2019)

    Google Scholar 

  26. Jia, Z., Lin, Y., Cai, X., Chen, H., Gou, H., Wang, J.: Sst-emotionnet: Spatial-spectral-temporal based attention 3d dense network for eeg emotion recognition. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2909–2917 (2020)

    Google Scholar 

  27. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 61971420), the Science Frontier Program of the Chinese Academy of Sci-ences (Grant No. QYZDJ-SSW-SMC019) and the Science and Technology Innovation 2030 - Brain Science and Brain-Inspired Intelligence Project (Grant No. 2021ZD0200200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianming Zuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, W. et al. (2023). EEG-Based Subject-Independent Depression Detection Using Dynamic Convolution and Feature Adaptation. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13969. Springer, Cham. https://doi.org/10.1007/978-3-031-36625-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36625-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36624-6

  • Online ISBN: 978-3-031-36625-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics