Skip to main content

On the Complete Area Coverage Problem of Painting Robots

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13969))

Included in the following conference series:

  • 495 Accesses

Abstract

Recently, we proposed a novel algorithm for painting problems based on the concepts of minimum spanning-tree based approach and triangle mesh to obtain an O(nlog n) complete area coverage path planning algorithm on polygonal surfaces with minimum length, where n is the number of triangles. In this article, we reduced the time complexity to O(n) by modifying the algorithm. Our proposed method adopts a mobile robot which navigates through an arrangement of areas to be covered without energy and time constraints. In the end, this robot will return to the original starting point. According to the performance analysis, our method is proven to be the fastest algorithm with minimum length to solve the complete area coverage planning for painting robots on polygonal surfaces. In addition, the number of turns has been significantly reduced by 30.26% using the scheme of triangle merge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balch, T., Arkin, R.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  2. Chen, H., Xi, N., Sheng, W., Song, M., Chen, Y.: CAD-based automated robot trajectory planning for spray painting of free-form surfaces. Ind. Robot Int. J. 29(5), 426–433 (2002)

    Article  Google Scholar 

  3. Chen, J., Luo, C., Krishnan, M., Paulik, M., Tang, Y.: An enhanced dynamic Delaunay triangulation-based path planning algorithm for autonomous mobile robot navigation. In: Intelligent Robots and Computer Vision XXVII: Algorithms and Techniques (2010)

    Google Scholar 

  4. Chew, L.P.: Constrained delaunay triangulations. In: Proceedings of the Symposium on Computational Geometry, pp. 215–222 (1987)

    Google Scholar 

  5. Choset, H.: Coverage for robotics - a survey of recent results. Ann. Math. Artif. Intell. 31, 113–126 (2001)

    Article  MATH  Google Scholar 

  6. Chu, Z., Sun, B., Zhu, D., Zhang, M., Luo, C.: Motion control of unmanned underwater vehicles via deep imitation reinforcement learning algorithm. IET Intel. Transp. Syst. 14(7), 764–774 (2020)

    Article  Google Scholar 

  7. Delaunay, B.: Sur la sphère vide, Izvestia Akademii Nauk SSSR. Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934)

    MATH  Google Scholar 

  8. Fang, G., Dissanayake, G., Lau, H.: A behaviour-based optimisation strategy for multi-robot exploration. In: Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, Singapore, pp. 875–879 (2004)

    Google Scholar 

  9. Farsi, M., Ratcliff, K., Johnson, P.J., Allen, C.R., Karam, K.Z., Pawson, R.: Robot control system for window cleaning. In: Proceedings of 11th International Symposium on Automation and Robotics in Construction, Brighton, UK, pp. 617–623 (1994)

    Google Scholar 

  10. Fazli, P., Davoodi, A., Pasquier, P., Mackworth, A.K.: Fault-tolerant multi-robot area coverage with limited visibility. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 18–22 (2010)

    Google Scholar 

  11. Ferranti, E., Trigoni, N., Levene, M.: Brick & Mortar: an online multi-agent exploration algorithm. In: Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 761–767 (2007)

    Google Scholar 

  12. Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot. Ann. Math. Artif. Intell. 31, 77–98 (2001)

    Article  MATH  Google Scholar 

  13. Gage, D.W.: Randomized search strategies with imperfect sensors. In: Proceedings of SPIE, Mobile Robots VIII - The International Society for Optical Engineering, Boston, USA, pp. 270–279 (1994)

    Google Scholar 

  14. Hazon, M., Mieli, F., Kaminka, G.A.: Towards robust on-line multi-robot coverage. In: Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, USA, pp. 1710–1715 (2006)

    Google Scholar 

  15. Hazon, N., Kaminka, G.A.: Redundancy, efficiency, and robustness in multi-robot coverage. In: Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 735–741 (2005)

    Google Scholar 

  16. Jan, G.E., Fung, K., Wu, P.Y., Leu, S.W.: Shortest path-planning on polygonal surfaces with O(nlog n) time. In: Proceedings of 2016 IEEE International Conference on Control and Robotics Engineering, Singapore, April 2016, pp. 98–102 (2016)

    Google Scholar 

  17. Jan, G.E., Fung, K., Hung, T.H., Luo, C.: The optimal approach to the painting problems on polygonal surfaces. In: IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, Waikiki Beach, Hawaii, USA, pp. 1172–1175 (2017)

    Google Scholar 

  18. Jan, G.E., Sun, C.C., Tsai, W.C., Lin, T.H.: An O(nlog n) shortest path algorithm based on Delaunay triangulation. IEEE/ASME Trans. Mechatron. 19(2), 660–666 (2014)

    Article  Google Scholar 

  19. Jan, G.E., Tsai, W.C., Sun, C.C., Lin, B.S.: A Delaunay triangulation-based shortest path algorithm with O(nlog n) time in the Euclidean plane. In: 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 186–189 (2012)

    Google Scholar 

  20. Jung, D., Cheng, G., Zelinsky, A.: Experimentals in realising cooperation between autonomous mobile robots. In: Fifth International Symposium on Experimental Robotics, Barcelona, Spain, pp. 609–620 (1997)

    Google Scholar 

  21. Jung, D., Cheng, G., Zelinsky, A.: Robot cleaning: an application of distributed planning and real-time vision. In: Zelinsky, A. (ed.) Field and Service Robotics, pp. 187–194. Springer, New York (1998)

    Chapter  Google Scholar 

  22. Jung, D., Zelinsky, A.: An architecture for distributed cooperative-planning in a behaviour-based multi-robot system. Robot. Auton. Syst. 26, 149–174 (1999)

    Article  Google Scholar 

  23. Kurabayashi, D., et al.: Cooperative sweeping by multiple mobile robots with relocating portable obstacles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, pp. 1472–1477 (1996)

    Google Scholar 

  24. Kurabayashi, D., Ota, J., Arai, T., Yoshida, E.: Cooperative sweeping by multiple mobile robots. In: IEEE International Conference on Robotics and Automation, Minneapolis, USA, pp. 1744–1749 (1996)

    Google Scholar 

  25. Lawitzky, G.: A navigation system for cleaning robots. Auton. Robot. 9, 255–260 (2000)

    Article  Google Scholar 

  26. Luo, C., Yang, S.X.: A bioinspired neural network for real-time concurrent map building and complete coverage robot navigation in unknown environments. IEEE Trans. Neural Netw. 19(7), 1279–1298 (2008)

    Article  Google Scholar 

  27. Luo, C., Yang, S.X., Li, X., Meng, M.Q.-H.: Neural-dynamics-driven complete area coverage navigation through cooperation of multiple mobile robots. IEEE Trans. Industr. Electron. 64(1), 750–760 (2017). https://doi.org/10.1109/TIE.2016.2609838

    Article  Google Scholar 

  28. Mannadiar, R., Rekleitis, A.I.: Optimal coverage of a known arbitrary environment. In: IEEE/RSJ International Conference on Intelligent Robots and Automation, pp. 5525–5530 (2010)

    Google Scholar 

  29. Najjaran, H., Kircanski, N.: Path planning for a terrain scanner robot. In: 31st International Symposium on Robotics, Montreal, Canada, pp. 132–137 (2000)

    Google Scholar 

  30. Oh, J.S., Choi, Y.H., Park, J.B., Zheng, Y.F.: Complete coverage navigation of cleaning robots using triangular-cell-based map. IEEE Trans. Industr. Electron. 51(3), 718–726 (2004)

    Article  Google Scholar 

  31. Oh, J.S., Park, J.B., Choi, Y.H.: Complete coverage navigation of clean robot based on triangular cell map. In: IEEE International Symposium on Industrial Electronics, Pusan, South Korea, pp. 2089–2093 (2001)

    Google Scholar 

  32. Ollis, M., Stentz, A.: First results in vision-based crop line tracking. In: IEEE International Conference on Robotics and Automation, Minneapolis, USA, pp. 951–956 (1996)

    Google Scholar 

  33. Ollis, M., Stentz, A.: Vision-based perception for an automated harvester. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robot and Systems, Grenoble, France, pp. 1838–1844 (1997)

    Google Scholar 

  34. Ortiz, F., et al.: Robots for hull ship cleaning. In: Proceedings of IEEE International Symposium on Industrial Electronics, pp. 2077–2082 (2007)

    Google Scholar 

  35. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)

    Article  Google Scholar 

  36. Rekleitis, I.M., Dudek, D., Milios, E.E.: Multi-robot exploration of an unknown environment, efficiently reducing the odometry error. In: Proceedings of the 15th IEEE International Joint Conference on Artificial Intelligence, Nagoya, Japan, pp. 1340–1345 (1997)

    Google Scholar 

  37. Ryu, S.W., Lee, Y.H., Kuc, T.Y., Ji, S.H., Moon, Y.S.: A search and coverage algorithm for mobile robot. In: Proceedings of the 2nd International Conference on Ubiquitous Robots and Ambient Intelligence, Incheon, Korea, pp. 1–6 (2011)

    Google Scholar 

  38. Singh, A.: An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Appl. Soft Comput. 9(2), 625–631 (2009)

    Article  Google Scholar 

  39. Sun, C.-C., Jan, G.E., Leu, S.-W., Yang, K.-C., Chen, Y.-C.: Near-shortest path-planning on a quadratic surface with O(n log n) time. IEEE Sens. J. 15(11), 6079–6080 (2015)

    Article  Google Scholar 

  40. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Distributed covering by ant-robots using evaporating traces. IEEE Trans. Robot. Autom. 15(5), 918–933 (1999)

    Article  Google Scholar 

  41. Xi, Z., Lien, J.M.: Continuous unfolding of polyhedral-a motion planning approach. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 3249–3254 (2015)

    Google Scholar 

  42. Yasutomi, F., Takaoka, D., Yamada, M., Tsukamoto, K.: Cleaning robot control. In: Proceedings of IEEE International Conference on Robotics and Automation, Philadelphia, USA, pp. 1839–1841 (1988)

    Google Scholar 

  43. Zuo, G., Zhang, P., Qiao, J.: Path planning algorithm based on sub-region for agricultural robot. In: Proceedings of the 2nd International Asia Conference on Informatics in Control, Automation and Robotics, vol. 2, pp. 197–200 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ching Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jan, G.E., Fung, K., Luo, C., Hsieh, HC. (2023). On the Complete Area Coverage Problem of Painting Robots. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13969. Springer, Cham. https://doi.org/10.1007/978-3-031-36625-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36625-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36624-6

  • Online ISBN: 978-3-031-36625-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics