Skip to main content

Research on UAV Dynamic Target Tracking with Multi-sensor Position Feedback

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13969))

Included in the following conference series:

  • 494 Accesses

Abstract

The path planning and control of unmanned aerial vehicles (UAVs) is an important part of autonomous flight. High-precision positioning and navigation is one of the key technologies to achieve adaptive flight, efficient reconnaissance and precise attack. A control method of adaptive target tracking and obstacle avoidance for rotorcraft UAVs is proposed in the paper to solve the problem. According to the characteristics of the nonlinear UAVs’ system, the artificial potential field method and backstepping method are used for path planning and flight control respectively. The unscented Kalman filter combined with UWB and INS is used to obtain accurate position and feedback to the artificial potential field to ensure the stability of the system and the accuracy of target tracking. This paper describes the dynamic target simulation of multiple obstacles. It is shown that the satisfactory tracking performance with the new algorithm, and the stability of obstacle avoidance is also improved.

This research was supported by the Opening Project of Unmanned System Intelligent Perception Control Technology Engineering Laboratory of Sichuan Province(WRXT2021-004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radmanesh, M., Kumar, M., Guentert, P.H., et al.: Overview of path-planning and obstacle avoidance algorithms for UAVs: A comparative study. Unman. Syst. 6(2): 95–118 (2018)

    Google Scholar 

  2. Li, Y.: Research on Obstacle Avoidance of Mobile Robots Based on Artificial Potential Field Method. Hefei University of Technology, Hefei (2013)

    Google Scholar 

  3. Haiyun, C., Huazhou, C., Qiang, L.: Multi-UAV 3D formation path planning based on improved artificial potential field method. J. Syst. Simulat. 32(03), 414–420 (2020)

    Google Scholar 

  4. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous Robot Vehicles, pp. 396–404. Springer, New York (1986). https://doi.org/10.1007/978-1-4613-8997-2_29

  5. Chen, G., et al.: Path planning for manipulators based on an improved probabilistic roadmap method. Robot. Comput. Integrat. Manuf. 72, 102196 (2021)

    Article  Google Scholar 

  6. Sonmez, A., Kocyigit, E., Kugu, E.: Optimal path planning for UAVs using genetic algorithm. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 50–55. IEEE (2015)

    Google Scholar 

  7. Jianfa, W., Honglun, W., Yiheng, L., Peng, Y.: A review of research on UAV obstacle avoidance route planning methods. Unman. Syst. Technol. 3(01), 1–10 (2020)

    Google Scholar 

  8. Xiao, R., et al.: Design and experiment of UWB-based positioning aided navigation system for agricultural machinery. J. South China Agricult. Univ. 43(3), 116–123 (2022)

    MathSciNet  Google Scholar 

  9. Chen, X.: Design of laser sensor-based obstacle avoidance path control system for agricultural UAVs. Mach. Manuf. Automat. 50(06), 170–173 (2021)

    Google Scholar 

  10. Afandi, M.N.R.B.M., et al.: Comparison of backstepping, fuzzy-PID, and PID control techniques using X8 model in relation to A* path planning. In: 2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE), pp. 340–345. IEEE (2017)

    Google Scholar 

  11. Wang, C., Shen, C., Zhang, K.: TDOA/AOA fusion algorithm combining steepest descent algorithm for indoor NLOS scenarios. J. Hainan Univ. (Nat. Sci. Edn.) 37(04), 299–305 (2019)

    Google Scholar 

  12. Ma, Y., Liu, G., Hu, Y., et al.: Research on UAV pre-defined route obstacle avoidance based on improved artificial potential field. High Technol. Commun. 30(1), 64–70 (2020)

    Google Scholar 

  13. Yuzin, G., Xiaocheng, S., Xiaopei, L., et al.: UAV obstacle avoidance control based on Laplace artificial potential field. J. Univ. Chin. Acad. Sci. 37(05), 681–687 (2020)

    Google Scholar 

  14. Tu, K., Hou, H., Su, W.: Improved artificial potential field method for UAV obstacle avoidance path planning. J. Xi’an Univ. Technol. 42(2), 170–177 (2022)

    Google Scholar 

  15. Chunxiao, G.: Research on quadrotor target tracking technology based on ultra-wideband positioning. Comput. Digit. Eng. 50(02), 294–299 (2022)

    Google Scholar 

  16. Wan, W., Liu, Y.: Design of attitude control system for four rotor UAV. IOP Conf. Ser. Mater. Sci. Eng. IOP Publ. 452(4), 042165 (2018)

    Google Scholar 

  17. Zhang, T.: Research on Ultra-Wideband Localization Technology in Non-visual Range Environment. Xi’an University of Science and Technology, Xi’an (2018)

    Google Scholar 

  18. Jiang, S., Qiu, Q., Yuan, S., et al.: Stochastic resonance for a bistable system with multiplicative noise and additive recycled noise. Indian J. Phys. 2022, 1–7 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, P. et al. (2023). Research on UAV Dynamic Target Tracking with Multi-sensor Position Feedback. In: Tan, Y., Shi, Y., Luo, W. (eds) Advances in Swarm Intelligence. ICSI 2023. Lecture Notes in Computer Science, vol 13969. Springer, Cham. https://doi.org/10.1007/978-3-031-36625-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36625-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36624-6

  • Online ISBN: 978-3-031-36625-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics