Skip to main content

Review on Nuclear Thermal Propulsion Analysis of Fuel Element and Simulation Methods

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 (ICCSA 2023)

Abstract

This paper is mainly focused on reviewing different approaches for nuclear thermal propulsion analysis of fuel elements used for this matter. Mathematical models, simulation options and code generation that have been applied using computational tools such as OpenFOAM and other resources are considered. Additionally, experimental data from the Nuclear Engine for Rocket Vehicle Application (NERVA) is included in this paper. Nuclear thermal propulsion is known as one of the most important choice of propulsion technologies for coming manned missions to different interplanetary destinations. Systems based on Nuclear Thermal Propulsion (NTP) could improve vehicle returning and reduce missions risks. It can be done through travel time reduction and payload capacity improvement in comparison to for instance chemical propulsion systems. Nowadays developments of these systems are based on low enriched uranium fuels and this review work is focused on such fuel

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CFD Direct. 2015–2020. OpenFOAM v5 User Guide (2020). https://cfd.direct/openfoam/user-guide-v5/

  2. Akyuzlu, K.M.: Numerical study of high-temperature and high-velocity gaseous hydrogen flow in a cooling channel of a nuclear thermal rocket core. J. Nucl. Eng. Radiat. Sci. 1(4) (2015)

    Google Scholar 

  3. Aufiero, M., Fratoni, M.: Development of multiphysics tools for fluoride-cooled high-temperature reactors. In: Proceedings of PHYSOR, pp. 2116–2127 (2016)

    Google Scholar 

  4. Aufiero, M., Fiorina, C., Laureau, A., Rubiolo, P., Valtavirta, V.: Serpent-OpenFOAM coupling in transient mode: simulation of a Godiva prompt critical burst. In: Proceedings of M &C+ SNA+ MC, pp. 19–23 (2015)

    Google Scholar 

  5. Ballard, R.: Nuclear thermal propulsion update. Technical report (2019)

    Google Scholar 

  6. Benensky, K., Collins, R., Duchek, M., Holmes, L., Harnack, C., Abrams, J.: Reactor subsystem trades for a near-term nuclear thermal propulsion flight demonstration mission. In: Proceedings of Nuclear and Emerging Technologies for Space Applications, Oak Ridge National Laboratory (April 2020)

    Google Scholar 

  7. Braun, R., Myers, R., Bragg-Sitton, S.: Space nuclear propulsion for human mars exploration. NASEM Space Nuclear Propulsion Technologies Committee Report. Washington, DC: National Academies of Sciences, Engineering and Medicine (2021)

    Google Scholar 

  8. Cheng, G., Ito, Y., Ross, D., Chen, Y.-S., Wang, T.-S.: Numerical simulations of single flow element in a nuclear thermal thrust chamber. In: 39th AIAA Thermophysics Conference, p. 4143 (2007)

    Google Scholar 

  9. Daeubler, M., Jimenez, J., Sanches, V.: Development of a high-fidelity Monte Carlo thermal-hydraulics coupled code system serpent/subchanflow-first results. In: Proceedings of PHYSOR (2014)

    Google Scholar 

  10. Deng, J., Zeng, W., Wang, J., Ding, S., Chai, X.: Coupled neutronics and thermal-hydraulics transient simulation of a gas-cooled reactor in the aircraft nuclear propulsion system. Nucl. Eng. Des. 389, 111674 (2022)

    Article  Google Scholar 

  11. Fang, Y., Wang, C., Tian, W., Zhang, D., Guanghui, S., Qiu, S.: Study on high-temperature hydrogen dissociation for nuclear thermal propulsion reactor. Nucl. Eng. Des. 392, 111753 (2022)

    Article  Google Scholar 

  12. Finseth, J.L.: Rover nuclear rocket engine program: Overview of rover engine tests. final report (1991)

    Google Scholar 

  13. Fiorina, C., Pautz, A., Mikityuk, K.: Creation of an OpenFOAM fuel performance class based on FRED and integration into the GeN-foam multi-physics code. In: International Conference on Nuclear Engineering, vol. 51456, p. V003T02A027. American Society of Mechanical Engineers (2018)

    Google Scholar 

  14. Fiorina, C., Clifford, I., Aufiero, M., Mikityuk, K.: Gen-foam: a novel openfoam® based multi-physics solver for 2d/3d transient analysis of nuclear reactors. Nucl. Eng. Des. 294, 24–37 (2015)

    Article  Google Scholar 

  15. Marcos, I.G.: Thermal mixing CHT simulations with OpenFOAM: URANS and LES (2013)

    Google Scholar 

  16. Gates, J.T., Denig, A., Ahmed, R., Mehta, V.K., Kotlyar, D.: Low-enriched cermet-based fuel options for a nuclear thermal propulsion engine. Nucl. Eng. Des. 331, 313–330 (2018)

    Article  Google Scholar 

  17. Grande, L., Villamere, B., Allison, L., Mikhael, S., Rodriguez-Prado, A., Pioro, I.: Thermal aspects of uranium carbide and uranium dicarbide fuels in supercritical water-cooled nuclear reactors. J. Eng. Gas Turbines Power 133(2), 022901 (2011)

    Article  Google Scholar 

  18. Guo, Y., Li, Z., Huang, S., Liu, M., Wang, K.: A new neutronics-thermal-mechanics multi-physics coupling method for heat pipe cooled reactor based on RMC and OpenFOAM. Prog. Nucl. Energy 139, 103842 (2021)

    Article  Google Scholar 

  19. Gustafson, J.L.: Space nuclear propulsion fuel and moderator development plan conceptual testing reference design. Nucl. Technol. 207(6), 882–884 (2021)

    Article  Google Scholar 

  20. Hall, M.L., Rider, W.J., Cappiello, M.W.: Thermohydraulic modeling of nuclear thermal rockets: the KLAXON code. Technical report, Los Alamos National Lab., NM (United States) (1992)

    Google Scholar 

  21. Han, Z., Zhang, J., Wang, M., Tian, W., Qiu, S., Su, G.H.: A modified system analysis code for thermo-hydraulic calculation of hydrogen in a nuclear thermal propulsion (NTP) system. Ann. Nucl. Energy 164, 108632 (2021)

    Article  Google Scholar 

  22. Holman, R., Pierce, B.: Development of NERVA reactor for space nuclear propulsion. In: 22nd Joint Propulsion Conference, p. 1582 (1986)

    Google Scholar 

  23. Houts, M.G.: Advanced exploration with nuclear thermal propulsion. In: Tennessee Valley Interstellar Workshop (TVIW) Symposium on The Power of Synergy, number MSFC-E-DAA-TN62268 (2018)

    Google Scholar 

  24. Johnson, A.E., Kotlyar, D., Terlizzi, S., Ridley, G.: serpenttools: a Python package for expediting analysis with serpent. Nucl. Sci. Eng. 194(11), 1016–1024 (2020)

    Article  Google Scholar 

  25. Kim, H.T., Chang, S.-M., Son, Y.W.: Unsteady simulation of a full-scale CANDU-6 moderator with OpenFOAM. Energies 12(2), 330 (2019)

    Article  Google Scholar 

  26. Krecicki, M., Kotlyar, D.: Low enriched nuclear thermal propulsion neutronic, thermal hydraulic, and system design space analysis. Nucl. Eng. Des. 363, 110605 (2020)

    Article  Google Scholar 

  27. Krecicki, M.A.: Neutronic, thermal hydraulic, and system design space analysis of a low enriched nuclear thermal propulsion engine. Ph.D. thesis, Georgia Institute of Technology (2019)

    Google Scholar 

  28. Los Alamos National Laboratory. NUCLEAR ROCKETS: To Mars and Beyond (2020). https://www.lanl.gov/science/NSS/issue1_2011/story4.shtml

  29. Lanin, A.: Nuclear rocket engine reactor. Nuclear Rocket Engine Reactor: 170 (2013)

    Google Scholar 

  30. Lyon, L.L.: Performance of (U, Zr)C-graphite (composite) and of (U, Zr)C (carbide) fuel elements in the Nuclear Furnace 1 test reactor. Technical report, Los Alamos Scientific Lab., N. Mex. (USA) (1973)

    Google Scholar 

  31. Moraes, A., Lage, P., Cunha, G., da Silva, L.F.L.R.: Analysis of the non-orthogonality correction of finite volume discretization on unstructured meshes. In: Proceedings of the 22nd International Congress of Mechanical Engineering, Ribeirão Preto, Brazil, pp. 3–7 (2013)

    Google Scholar 

  32. Mousseau, V.A.: Accurate solution of the nonlinear partial differential equations from thermal hydraulics: thermal hydraulics. Nucl. Technol. 158(1), 26–35 (2007)

    Article  Google Scholar 

  33. Pempie, P., de l’Espace, R.-P.: History of the nuclear thermal rocket propulsion. In: AAAF 6th International Symposium Propulsion for Space Transportation, vol. 9 (2002)

    Google Scholar 

  34. Perotti, S.: Thermo-mechanical analysis of heat pipe cooled reactor for space applications with OpenFOAM (2022)

    Google Scholar 

  35. Petitgenet, V., et al.: A coupled approach to the design space exploration of nuclear thermal propulsion systems. In: AIAA Propulsion and Energy 2020 Forum, p. 3846 (2020)

    Google Scholar 

  36. Radman, S., Fiorina, C., Pautz, A.: Development of a novel two-phase flow solver for nuclear reactor analysis: algorithms, verification and implementation in OpenFOAM. Nucl. Eng. Des. 379, 111178 (2021)

    Article  Google Scholar 

  37. Romano, P.K., Forget, B.: The OpenMC Monte Carlo particle transport code. Ann. Nucl. Energy 51, 274–281 (2013)

    Article  Google Scholar 

  38. Shaposhnik, Y., Shwageraus, E., Elias, E.: Thermal-Hydraulic Feedbackmodule for BGCore System. Ben Gurion University of the Negev (2008)

    Google Scholar 

  39. Slaby, J.G.: Heat-Transfer Coefficients for Hydrogen Flowing Through Parallel Hexagonal Passages at Surface Temperatures to 2275 K, vol. 4959. National Aeronautics and Space Administration (1968)

    Google Scholar 

  40. Stewart, M.: Thermal, fluid, and neutronic analysis of the GCD LEU nuclear thermal propulsion core. In: AIAA Propulsion and Energy 2019 Forum, p. 3944 (2019)

    Google Scholar 

  41. Tuominen, R., et al.: Coupling serpent and OpenFOAM for neutronics-CFD multi-physics calculations. Master’s thesis (2015)

    Google Scholar 

  42. Tuominen, R., Valtavirta, V., Peltola, J., Leppänen, J.: Coupling serpent and OpenFOAM for neutronics-CFD multi-physics calculations. In: International Conference on the Physics of Reactors, PHYSOR 2016: Unifying Theory and Experiments in the 21st Century, pp. 255–269. American Nuclear Society (ANS) (2016)

    Google Scholar 

  43. Walton, J.T.: Program ELM: a tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements (1992)

    Google Scholar 

  44. Wang, J., Krecicki, M., Kotlyar, D.: Initial comparison of reduced and higher order thermal hydraulic solvers for nuclear thermal propulsion fuel element design. In: Proceedings of Nuclear and Emerging Technologies for Space Applications, Oak Ridge National Laboratory (April 2020)

    Google Scholar 

  45. Wang, J.C., Kotlyar, D.: High-resolution thermal analysis of nuclear thermal propulsion fuel element using OpenFOAM. Nucl. Eng. Des. 372, 110957 (2021)

    Article  Google Scholar 

  46. Wang, J.C.: Coarse-mesh-based Reduced-order Package for Multiphysics Simulation of Nuclear Thermal Propulsion Reactor Core. Ph.D. thesis, Georgia Institute of Technology (2021)

    Google Scholar 

  47. Wang, J., Wang, Q., Ding, M.: Review on neutronic/thermal-hydraulic coupling simulation methods for nuclear reactor analysis. Ann. Nucl. Energy 137, 107165 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to César A. Cárdenas R. or Carlos Andrés Collazos Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cárdenas R., C.A. et al. (2023). Review on Nuclear Thermal Propulsion Analysis of Fuel Element and Simulation Methods. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13956 . Springer, Cham. https://doi.org/10.1007/978-3-031-36805-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36805-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36804-2

  • Online ISBN: 978-3-031-36805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics