Skip to main content

FastCELF++: A Novel and Fast Heuristic for Influence Maximization in Complex Networks

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 (ICCSA 2023)

Abstract

Social networks reflect the relationships and interactions between individuals and have played a significant role in the spread of information, in which the communication of ideas and sharing of opinions happen all the time. There are various examples of how social networks can affect the behavior of individuals, like viral marketing, the spread of memes, and the propagation of fake news. This dynamic of information diffusion has motivated the research of several approaches to identify the prominent influencers in a network. The Influence Maximization Problem consists of identifying a subset S, called a seed set, of at most k elements to achieve the maximum (expected) propagation through a diffusion model, with S as the initial influencers on a network. It demonstrated that the influence maximization problem is an NP-hard optimization problem. Therefore, it is unfeasible to identify the subset S that ensures the most extensive diffusion due to its complexity. The most typical approach to this problem is using approximate algorithms, highlighting the Cost-Effective Lazy Forward (CELF), about 700 times faster than the greedy strategy proposed by Kemp et al., and CELF++, which presents a runtime gain of between 35 to 55% over CELF. This work modifies the two above-mentioned state-of-the-art algorithms, CELF and CELF++, replacing Monte Carlo simulations with functions to calculate the diffusion estimations (metamodels) for selecting a set of seeds. The adoption of well-known methods in the literature with metamodels can identify orders of magnitude faster, more influential individuals and, in some cases, even outperform the results of these methods in terms of propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://snap.stanford.edu/data/index.html.

  2. 2.

    http://networkrepository.com/.

References

  1. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the Fourth ACM International Conference On Web Search and Data Mining, pp. 65–74 (2011)

    Google Scholar 

  2. Banerjee, S., Jenamani, M., Pratihar, D.K.: A survey on influence maximization in a social network. Knowl. Inf. Syst. 62(9), 3417–3455 (2020). https://doi.org/10.1007/s10115-020-01461-4

    Article  Google Scholar 

  3. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference On Knowledge Discovery And Data Mining, pp. 199–208. ACM (2009)

    Google Scholar 

  4. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: 2010 IEEE International Conference On Data Mining, pp. 88–97. IEEE (2010)

    Google Scholar 

  5. Gong, M., Yan, J., Shen, B., Ma, L., Cai, Q.: Influence maximization in social networks based on discrete particle swarm optimization. Inf. Sci. 367, 600–614 (2016)

    Article  Google Scholar 

  6. Goyal, A., Lu, W., Lakshmanan, L.V.: Celf++ optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th International Conference Companion On World Wide Web, pp. 47–48 (2011)

    Google Scholar 

  7. Ienco, D., Bonchi, F., Castillo, C.: The meme ranking problem: Maximizing microblogging virality. In: 2010 IEEE International Conference on Data Mining Workshops, pp. 328–335. IEEE (2010)

    Google Scholar 

  8. Jiang, Q., Song, G., Gao, C., Wang, Y., Si, W., Xie, K.: Simulated annealing based influence maximization in social networks. In: Twenty-fifth AAAI Conference On Artificial Intelligence (2011)

    Google Scholar 

  9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery And Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  10. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 420–429. ACM (2007)

    Google Scholar 

  11. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data (Jun 2014)

  12. Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on social graphs: a survey. IEEE Trans. Knowl. Data Eng. 30(10), 1852–1872 (2018)

    Article  Google Scholar 

  13. Li, Y., Zhang, D., Tan, K.L.: Real-time targeted influence maximization for online advertisements (2015)

    Google Scholar 

  14. Mitzenmacher, M., Upfal, E.: Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis. Cambridge University Press (2017)

    Google Scholar 

  15. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). http://networkrepository.com

  16. Song, X., Tseng, B.L., Lin, C.Y., Sun, M.T.: Personalized recommendation driven by information flow. In: Proceedings of the 29th Annual International ACM SIGIR Conference On Research And Development in Information Retrieval, pp. 509–516 (2006)

    Google Scholar 

  17. Tang, J., et al.: Maximizing the spread of influence via the collective intelligence of discrete bat algorithm. Knowl.-Based Syst. 160, 88–103 (2018)

    Article  Google Scholar 

  18. Webber, W., Moffat, A., Zobel, J.: A similarity measure for indefinite rankings. ACM Trans. Inform. Syst. (TOIS) 28(4), 1–38 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq and FAPEMIG for funding their projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Ribeiro Xavier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

do Carmo, V.E., Vieira, V.d.F., Oliveira, R.S., Xavier, C.R. (2023). FastCELF++: A Novel and Fast Heuristic for Influence Maximization in Complex Networks. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13956 . Springer, Cham. https://doi.org/10.1007/978-3-031-36805-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36805-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36804-2

  • Online ISBN: 978-3-031-36805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics