Skip to main content

Structural Node Representation Learning for Detecting Botnet Nodes

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 (ICCSA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13956 ))

Included in the following conference series:

  • 569 Accesses

Abstract

Private consumers, small businesses, and even large enterprises are all more at risk from botnets. These botnets are known for spearheading Distributed Denial-Of-Service (DDoS) attacks, spamming large populations of users, and causing critical harm to major organizations. The development of Internet-of-Things (IoT) devices led to the use of these devices for cryptocurrency mining, in transit data interception, and sending logs containing private data to the master botnet. Different techniques have been developed to identify these botnet activities, but only a few use Graph Neural Networks (GNNs) to analyze host activity by representing their communications with a directed graph. Although GNNs are intended to extract structural graph properties, they risk to cause overfitting, which leads to failure when attempting to do so from an unidentified network. In this study, we test the notion that structural graph patterns might be used for efficient botnet detection. In this study, we also present SIR-GN, a structural iterative representation learning methodology for graph nodes. Our approach is built to work well with untested data, and our model is able to provide a vector representation for every node that captures its structural information. Finally, we demonstrate that, when the collection of node representation vectors is incorporated into a neural network classifier, our model outperforms the state-of-the-art GNN based algorithms in the detection of bot nodes within unknown networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zou, C.C., Cunningham, R.: Honeypot-aware advanced botnet construction and maintenance. In: International Conference on Dependable Systems and Networks, pp. 199–208. IEEE (2006)

    Google Scholar 

  2. Yan, G., Ha, D.T., Eidenbenz, S.: AntBot: Anti-pollution peer-to-peer botnets. Comput. Netw. 55(8), 1941–1956 (2011)

    Article  Google Scholar 

  3. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering Analysis of Network Traffic for Protocol-And Structure-Independent Botnet Detection (2008)

    Google Scholar 

  4. Holz, T., Gorecki, C., Freiling, F., Rieck, K.: Detection and mitigation of fast-flux service networks. In: 15th Annual Network and Distributed System Security Symposium (2008)

    Google Scholar 

  5. Bartos, K., Sofka, M., Franc, V.: Optimized Invariant Representation of Network Traffic for Detecting Unseen Malware Variants. In: 25th {USENIX} Security Symposium, pp. 807–822 (2016)

    Google Scholar 

  6. Perdisci, R., Lee, W.: Method and System for Detecting Malicious and/or Botnet-Related Domain Names. Patent 10,027,688 (2018)

    Google Scholar 

  7. Andriesse, D., Rossow, C., Bos, H.: Reliable recon in adversarial peer-to-peer botnets. In: 2015 Internet Measurement Conference, pp. 129–140 (2015)

    Google Scholar 

  8. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  11. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: 24th International Conference on World Wide Web, pp. 1067–1077 (2015)

    Google Scholar 

  12. Grover, A., Leskovec, J.: Node2vec: Scalable Feature Learning for Networks. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  13. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  14. Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: Struc2vec: Learning node representations from structural identity. In: 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 385–394 (2017)

    Google Scholar 

  15. Donnat, C., Zitnik, M., Hallac, D., Leskovec, J.: Learning structural node embeddings via diffusion wavelets. In: 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1320–1329 (2018)

    Google Scholar 

  16. Joaristi, M., Serra, E.: SIR-GN: A fast structural iterative representation learning approach for graph nodes. ACM Trans. Knowl. Discov. Data 15(6), 1–39 (2021)

    Article  Google Scholar 

  17. Layne, J., Serra, E.: INFSIR-GN: Inferential Labeled Node and Graph Representation Learning. arXiv preprint arXiv:1918.10503 (2021)

  18. Ceci, M., Cuzzocrea, A., Malerba, D.: Supporting roll-up and drill-down operations over OLAP data cubes with continuous dimensions via density-based hierarchical clustering. In: SEBD. Citeseer, pp. 57–65 (2011)

    Google Scholar 

  19. Serra, E., Joaristi, M., Cuzzocrea, A.:, Large-scale sparse structural node representation. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 5247–5253. IEEE (2020)

    Google Scholar 

  20. Braun, P., Cuzzocrea, A., Keding, T.D., Leung, C.K., Padzor, A.G., Sayson, D.: Game data mining: clustering and visualization of online game data in cyber-physical worlds. Procedia Comput. Sci. 112, 2259–2268 (2017)

    Article  Google Scholar 

  21. Guzzo, A., Sacca, D., Serra, E.: An effective approach to inverse frequent set mining. In: 2009 9th IEEE International Conference on Data Mining, pp. 806–811. IEEE (2009)

    Google Scholar 

  22. Morris, K.J., Egan, S.D., Linsangan, J.L., Leung, C.K., Cuzzocrea, A., Hoi, C.S.: Token-based adaptive time-series prediction by ensembling linear and non-linear estimators: A machine learning approach for predictive analytics on big stock data”. In: 2018 17th IEEE International Conference on Machine Learning and Applications, pp. 1486–1491. IEEE (2018)

    Google Scholar 

  23. Serra, E., Subrahmanian, V.: A survey of quantitative models of terror group behavior and an analysis of strategic disclosure of behavioral models. IEEE Trans. Comput. Soc. Syst. 1(1), 66–88 (2014)

    Article  Google Scholar 

  24. Bellatreche, L., Cuzzocrea, A., Benkrid, S.: F&A: A methodology for effectively and efficiently designing parallel relational data warehouses on heterogenous database clusters. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2010. LNCS, vol. 6263, pp. 89–104. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15105-7_8

    Chapter  Google Scholar 

  25. Korzh, O., Joaristi, M., Serra, E.: Convolutional neural network ensemble fine-tuning for extended transfer learning. In: Chin, F.Y.L., Chen, C.L.P., Khan, L., Lee, K., Zhang, L.-J. (eds.) BIGDATA 2018. LNCS, vol. 10968, pp. 110–123. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94301-5_9

    Chapter  Google Scholar 

  26. Ahn, S., et al.: A fuzzy logic based machine learning tool for supporting big data business analytics in complex artificial intelligence environments. In: 2019 IEEE International Conference on Fuzzy Systems, pp. 1–6. IEEE (2019)

    Google Scholar 

  27. Serra, E., Sharma, A., Joaristi, M., Korzh, O.: Unknown landscape identification with CNN transfer learning. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 813–820. IEEE (2018)

    Google Scholar 

  28. Serra, E., Shrestha, A., Spezzano, F., Squicciarini, A.: Deeptrust: An automatic framework to detect trustworthy users in opinion-based systems. In: 10th ACM Conference on Data and Application Security and Privacy, pp. 29–38 (2020)

    Google Scholar 

  29. Joaristi, M., Serra, E., Spezzano, F.: Inferring bad entities through the panama papers network. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 767–773. IEEE (2018)

    Google Scholar 

  30. Joaristi, M., Serra, E., Spezzano, F.: Detecting suspicious entities in offshore leaks networks. Soc. Netw. Anal. Min. 9(1), 1–15 (2019)

    Article  Google Scholar 

  31. CAIDA. The CAIDA UCSD Anonymized Internet Traces-2018. (2018). Accessed 16 Sept. 2017. https://www.caida.org/data/passive/passivedataset.xml

  32. Kaashoek, M.F., Karger, D.R.: Koorde: A simple degree-optimal distributed hash table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 98–107. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45172-3_9

    Chapter  Google Scholar 

  33. Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_5

    Chapter  MATH  Google Scholar 

  34. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H., Chord, A.: A scalable peer-to-peer lookup service for internet applications. Lab. Comput. Sci., Massachusetts Inst. Technol., Tech. Rep. TR-819 (2001)

    Google Scholar 

  35. Jelasity, M., Bilicki, V., et al.: Towards automated detection of peer-to-peer botnets: On the limits of local approaches. LEET 9, 3 (2009)

    Google Scholar 

  36. Garcia, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet detection methods. Comput. Secur. 45, 100–123 (2014)

    Article  Google Scholar 

  37. Zhou, J., Xu, Z., Rush, A.M., Yu, M.: Automating botnet detection with graph neural networks. arXiv preprint arXiv:2003.06344 (2020)

  38. Coronato, A., Cuzzocrea, A.: An innovative risk assessment methodology for medical information systems. IEEE Trans. Knowl. Data Eng. 34(7), 3095–3110 (2020)

    Google Scholar 

  39. Leung, C.K., Cuzzocrea, A., Mai, J.J., Deng, D., Jiang, F.: Personalized deepinf: Enhanced social influence prediction with deep learning and transfer learning. In: 2019 IEEE International Conference on Big Data, pp. 2871–2880. IEEE (2019)

    Google Scholar 

  40. Leung, C.K., Braun, P., Hoi, C.S.H., Souza, J., Cuzzocrea, A.: Urban analytics of big transportation data for supporting smart cities. In: Ordonez, C., Song, I.-Y., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2019. LNCS, vol. 11708, pp. 24–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27520-4_3

    Chapter  Google Scholar 

  41. Leung, C.K., Chen, Y., Hoi, C.S., Shang, S., Wen, Y., Cuzzocrea, A.: Big data visualization and visual analytics of COVID-19 data. In: 24th International Conference Information Visualisation, pp. 415–420. IEEE (2020)

    Google Scholar 

  42. Leung, C.K., Chen, Y., Hoi, C.S., Shang, S., Cuzzocrea, A.: Machine learning and OLAP on big COVID-19 data. In: 2020 IEEE International Conference on Big Data, pp. 5118–5127. IEEE (2020)

    Google Scholar 

  43. Barkwell, K.E., et al.: Big data visualisation and visual analytics for music data mining. In: 22nd International Conference on Information Visualisation, pp. 235–240. IEEE (2018)

    Google Scholar 

  44. Camara, R.C., et al.: Fuzzy logic-based data analytics on predicting the effect of hurricanes on the stock market. In: International Conference on Fuzzy Systems, pp. 1–8. IEEE (2018)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Cuzzocrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carpenter, J., Layne, J., Serra, E., Cuzzocrea, A., Gallo, C. (2023). Structural Node Representation Learning for Detecting Botnet Nodes. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13956 . Springer, Cham. https://doi.org/10.1007/978-3-031-36805-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36805-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36804-2

  • Online ISBN: 978-3-031-36805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics