Skip to main content

CFD Prediction of Wind Turbine Blade Compressible Aerodynamics

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 (ICCSA 2023)

Abstract

Computational fluid dynamics (CFD) analysis is carried out to evaluate the compressible aerodynamics of a large horizontal axis wind turbine blade. The mean turbulent flow around the rotating blade is simulated by adopting the unsteady Reynolds-averaged Navier-Stokes modelling approach, where the governing equations are solved by means of a finite volume-based numerical method, supplied with a two-equation eddy-viscosity turbulence model. The present CFD model using an open-source code for computational wind engineering applications was verified to have significant practical potential by making a comparison with a reference steady solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan, C., Archer, C.L.: Assessing compressibility effects on the performance of large horizontal-axis wind turbines. Appl. Energy 212, 33–45 (2018)

    Article  Google Scholar 

  2. Sørensen, J.N.; Bertagnolio, F.; Jost, E.; Lutz, T. Aerodynamic effects of compressibility for wind turbines at high tip speeds. J. Phys.: Conf. Ser. 1037, 022003 (2018)

    Google Scholar 

  3. Sørensen, J.N.: Aerodynamic aspects of wind energy conversion. Annu. Rev. Fluid Mech. 43, 427–448 (2011)

    Article  MATH  Google Scholar 

  4. Madsen, M.H.A., Zahle, F., Sørensen, N.N., Martins, J.R.R.A.: Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine. Wind Energ. Sci. 4, 163–192 (2019)

    Article  Google Scholar 

  5. Wilcox, D.C.: Turbulence Modeling for CFD, 3rd edn. DCW Industries Inc, La Canada CA (2006)

    Google Scholar 

  6. Hossain, M.A., Ziaul, H., Kommalapati, R.R., Khan, S.: Numeric investigation of compressible flow over NREL Phase VI airfoil. Int. J. Eng. Res. Technol. 2, 2 (2013)

    Google Scholar 

  7. Gaertner, E.; Rinker, J.; Sethuraman, L. et al. Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine, NREL/TP-75698, International Energy Laboratory (2020)

    Google Scholar 

  8. IEA Wind Task 37 Model data for the 15 MW offshore reference wind turbine. https://github.com/IEAWindTask37/IEA-15-240-RWT Accessed 03 Jan 2023

  9. Song, X., Perot, J.B.: CFD Simulation of the NREL Phase VI Rotor. Wind Eng. 39, 299–310 (2015)

    Article  Google Scholar 

  10. De Stefano, G., Natale, N., Reina, G.P., Piccolo, A.: Computational evaluation of aerodynamic loading on retractable landing-gears. Aerospace 7, 68 (2020)

    Article  Google Scholar 

  11. Natale, N., Salomone, T., De Stefano, G., Piccolo, A.: Computational evaluation of control surfaces aerodynamics for a mid-range commercial aircraft. Aerospace 7, 139 (2020)

    Article  Google Scholar 

  12. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  13. Denaro, F.M., De Stefano, G.: A new development of the dynamic procedure in large-eddy simulation based on a finite volume integral approach. Theor. Comput. Fluid Dyn. 25, 315–355 (2011)

    Article  MATH  Google Scholar 

  14. Cao, J., et al.: Study of air compressibility effects on the aerodynamic performance of the IEA-15 MW offshore wind turbine. Energy Conv. Manag. 282, 116883 (2023)

    Article  Google Scholar 

  15. De Stefano, G., Dymkoski, E., Vasilyev, O.V.: Localized dynamic kinetic-energy model for compressible wavelet-based adaptive large-eddy simulation. Phys. Rev. Fluids 7, 054604 (2022)

    Article  Google Scholar 

  16. De Stefano, G.: Wavelet-based adaptive large-eddy simulation of supersonic channel flow with different thermal boundary conditions. Phys. Fluids 35, 035138 (2023)

    Google Scholar 

  17. De Stefano, G., Brown-Dymkoski, E., Vasilyev, O.V.: Wavelet-based adaptive large-eddy simulation of supersonic channel flow. J. Fluid Mech. 901, A13 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ge, X., De Stefano, G., Hussaini, M.Y., Vasilyev, O.V.: Wavelet-based adaptive eddy-resolving methods for modeling and simulation of complex wall-bounded compressible turbulent flows. Fluids 6, 331 (2021)

    Article  Google Scholar 

  19. Ge, X., Vasilyev, O.V., De Stefano, G., Hussaini, M.Y.: Wavelet-based adaptive unsteady Reynolds-averaged Navier-Stokes computations of wall-bounded internal and external compressible turbulent flows. In: Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida, January (2018)

    Google Scholar 

  20. Ge, X., Vasilyev, O.V., De Stefano, G., Hussaini, M.Y.: Wavelet-based adaptive unsteady Reynolds-averaged Navier-Stokes simulations of wall-bounded compressible turbulent flows. AIAA J. 58, 1529–1549 (2020)

    Article  Google Scholar 

  21. De Tavernier, D.; von Terzi, D. The emergence of supersonic flow on wind turbines. J. Phys.: Conf. Ser. 2265, 042068 (2022)

    Google Scholar 

  22. Salomone, T., Piomelli, U., De Stefano, G.: Wall-modeled and hybrid large-eddy simulations of the flow over roughness strips. Fluids 8, 10 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. De Stefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mezzacapo, A., Vitulano, M.C., Tomasso, A.D., De Stefano, G. (2023). CFD Prediction of Wind Turbine Blade Compressible Aerodynamics. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13956 . Springer, Cham. https://doi.org/10.1007/978-3-031-36805-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36805-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36804-2

  • Online ISBN: 978-3-031-36805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics