Skip to main content

OdeShell: An Interactive Tool and a Specific Domain Language to Develop Models Based on Ordinary Differential Equations

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 (ICCSA 2023)

Abstract

ODEs are a useful mathematical tool for modeling dynamic systems in different fields, such as physics, engineering, biology, and economics. They can provide insights into the behavior of complex systems over time. However, creating ODE models can be difficult and requires expertise in the subject matter and mathematical techniques. This paper presents the OdeShell, a command line interface that enables users to build and simulate ODE models while examining their behavior under diverse circumstances. OdeShell is a valuable addition to the ODE modeling domain, with the capability to ease the development of intricate models in various fields. The tool accommodates novice and proficient modelers, giving them a flexible and user-friendly environment to build and test ODE models. We elaborate on the principal features and functionality of OdeShell and demonstrate its utility in developing ODE models through small examples. Additionally, we discuss the ODE language, emphasizing its syntax and meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://github.com/rsachetto/odecompiler.

  2. 2.

    Available at: https://github.com/FISIOCOMP-UFJF/agos.

  3. 3.

    Available at: http://myokit.org.

  4. 4.

    Available at: https://cplusplus.com/reference/cmath/.

References

  1. Anderson, R.M.: Discussion: the Kermack-McKendrick epidemic threshold theorem. Bull. Math. Biol. 53, 1–32 (1991). https://doi.org/10.1007/BF02464422

    Article  MathSciNet  Google Scholar 

  2. Barbosa, C.B., et al.: A transformation tool for ODE based models. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 68–75. Springer, Heidelberg (2006). https://doi.org/10.1007/11758501_14

    Chapter  Google Scholar 

  3. Campos, R.S., Lobosco, M., dos Santos, R.W.: Adaptive time step for cardiac myocyte models. Procedia Comput. Sci. 4, 1092–1100 (2011)

    Article  Google Scholar 

  4. Clerx, M., Collins, P., de Lange, E., Volders, P.G.: Myokit: a simple interface to cardiac cellular electrophysiology. Prog. Biophys. Mol. Biol. 120(1), 100–114 (2016). https://doi.org/10.1016/j.pbiomolbio.2015.12.008. Recent Developments in Biophysics & Molecular Biology of Heart Rhythm

  5. Cohen, S.D., Hindmarsh, A.C., Dubois, P.F.: CVODE, a stiff/nonstiff ODE solver in C. Comput. Phys. 10(2), 138–143 (1996)

    Article  Google Scholar 

  6. Dickinson, R.P., Gelinas, R.J.: Sensitivity analysis of ordinary differential equation systems-a direct method. J. Comput. Phys. 21(2), 123–143 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  8. Miller, A.K., et al.: An overview of the CellML API and its implementation. BMC Bioinform. 11(1), 1–12 (2010). https://doi.org/10.1186/1471-2105-11-178

    Article  Google Scholar 

  9. Mitra, E.D., Hlavacek, W.S.: Parameter estimation and uncertainty quantification for systems biology models. Curr. Opin. Syst. Biol. 18, 9–18 (2019)

    Article  Google Scholar 

  10. Racine, J.: gnuplot 4.0: a portable interactive plotting utility (2006)

    Google Scholar 

  11. Roussel, M.R.: Stability analysis for ODEs. In: Nonlinear Dynamics: A Hands-on Introductory Survey. Morgan & Claypool Publishers (2019)

    Google Scholar 

  12. Teschl, G.: Ordinary Differential Equations and Dynamical Systems, vol. 140. American Mathematical Society (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Sachetto Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, R.S., Xavier, C.R. (2023). OdeShell: An Interactive Tool and a Specific Domain Language to Develop Models Based on Ordinary Differential Equations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023. ICCSA 2023. Lecture Notes in Computer Science, vol 13957. Springer, Cham. https://doi.org/10.1007/978-3-031-36808-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36808-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36807-3

  • Online ISBN: 978-3-031-36808-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics