Skip to main content

A False Data Injection Attack on Data-Driven Strategies in Smart Grid Using GAN

  • Conference paper
  • First Online:
Advances and Trends in Artificial Intelligence. Theory and Applications (IEA/AIE 2023)

Abstract

The smart grid is a critical cyber-physical infrastructure; attackers may exploit vulnerabilities to launch cyber attacks. The smart grid control system relies heavily on the communication infrastructure among sensors, actuators, and control systems, making it vulnerable to cyber-attacks. We propose a method for injecting a false data injection attack (FDIA) into the smart grid using generative adversarial networks (GAN). A sample of disturbance vectors generated using deep temporal convolutional GAN (DTCGAN) is superimposed on the original phasor measurement unit (PMU) measurements to generate compromised data. The performance results show a significant impact of the developed attack on data-driven methods for grid monitoring. Specifically, we demonstrated the attack on a transient stability application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alohali, B., Kifayat, K., Shi, Q., Hurst, W.: Replay attack impact on advanced metering infrastructure (AMI). In: Hu, J., Leung, V.C.M., Yang, K., Zhang, Y., Gao, J., Yang, S. (eds.) Smart Grid Inspired Future Technologies. LNICST, vol. 175, pp. 52–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47729-9_6

    Chapter  Google Scholar 

  2. Cook, A.A., Mısırlı, G., Fan, Z.: Anomaly detection for IoT time-series data: a survey. IEEE Internet Things J. 7(7), 6481–6494 (2019)

    Article  Google Scholar 

  3. Cubuk, E.D., Zoph, B., Schoenholz, S.S., Le, Q.V.: Intriguing properties of adversarial examples. arXiv preprint arXiv:1711.02846 (2017)

  4. Deng, R., Xiao, G., Lu, R., Liang, H., Vasilakos, A.V.: False data injection on state estimation in power systems-attacks, impacts, and defense: a survey. IEEE Trans. Industr. Inf. 13(2), 411–423 (2016)

    Article  Google Scholar 

  5. Gotti, D., Amaris, H., Larrea, P.L.: A deep neural network approach for online topology identification in state estimation. IEEE Trans. Power Syst. 36(6), 5824–5833 (2021)

    Article  Google Scholar 

  6. Griffiths, D.V., Smith, I.M.: Numerical Methods for Engineers. CRC Press, Boca Raton (2006)

    Book  MATH  Google Scholar 

  7. James, J., Hill, D.J., Lam, A.Y., Gu, J., Li, V.O.: Intelligent time-adaptive transient stability assessment system. IEEE Trans. Power Syst. 33(1), 1049–1058 (2017)

    Google Scholar 

  8. Kruse, J., Schäfer, B., Witthaut, D.: Predictability of power grid frequency. IEEE Access 8, 149435–149446 (2020)

    Article  Google Scholar 

  9. Lea, C., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks: a unified approach to action segmentation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 47–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_7

    Chapter  Google Scholar 

  10. Li, F., Wang, Q., Tang, Y., Xu, Y.: An integrated method for critical clearing time prediction based on a model-driven and ensemble cost-sensitive data-driven scheme. Int. J. Electr. Power Energy Syst. 125, 106513 (2021)

    Article  Google Scholar 

  11. Liu, Z., Wang, Q., Ye, Y., Tang, Y.: A GAN based data injection attack method on data-driven strategies in power systems. IEEE Trans. Smart Grid 13, 3203–3213 (2022)

    Article  Google Scholar 

  12. Mengis, M.R., Tajer, A.: Data injection attacks on electricity markets by limited adversaries: worst-case robustness. IEEE Trans. Smart Grid 9(6), 5710–5720 (2017)

    Article  Google Scholar 

  13. Mestav, K.R., Luengo-Rozas, J., Tong, L.: Bayesian state estimation for unobservable distribution systems via deep learning. IEEE Trans. Power Syst. 34(6), 4910–4920 (2019)

    Article  Google Scholar 

  14. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn. 44(3), 678–693 (2011)

    Article  MATH  Google Scholar 

  15. Song, Q., Tan, R., Ren, C., Xu, Y.: Understanding credibility of adversarial examples against smart grid: a case study for voltage stability assessment. In: Proceedings of the Twelfth ACM International Conference on Future Energy Systems, pp. 95–106 (2021)

    Google Scholar 

  16. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 23(5), 828–841 (2019)

    Article  Google Scholar 

  17. Sutherland, D.J., et al.: Generative models and model criticism via optimized maximum mean discrepancy. arXiv preprint arXiv:1611.04488 (2016)

  18. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  19. Tan, B., Yang, J., Pan, X., Li, J., Xie, P., Zeng, C.: Representational learning approach for power system transient stability assessment based on convolutional neural network. J. Eng. 2017(13), 1847–1850 (2017)

    Article  Google Scholar 

  20. Tang, J., Sui, H.: Power system transient stability assessment based on stacked autoencoders and support vector machine. In: IOP Conference Series: Materials Science and Engineering, vol. 452, p. 042117. IOP Publishing (2018)

    Google Scholar 

  21. Tong, X., Qi, W.: False data injection attack on power system data-driven methods based on generative adversarial networks. In: 2021 IEEE Sustainable Power and Energy Conference (iSPEC), pp. 4250–4254. IEEE (2021)

    Google Scholar 

  22. Wu, S., Zheng, L., Hu, W., Yu, R., Liu, B.: Improved deep belief network and model interpretation method for power system transient stability assessment. J. Mod. Power Syst. Clean Energy 8(1), 27–37 (2019)

    Article  Google Scholar 

  23. Zhang, J.E., Wu, D., Boulet, B.: Time series anomaly detection for smart grids: a survey. In: 2021 IEEE Electrical Power and Energy Conference (EPEC), pp. 125–130. IEEE (2021)

    Google Scholar 

  24. Zhong, X., Jayawardene, I., Venayagamoorthy, G.K., Brooks, R.: Denial of service attack on tie-line bias control in a power system with PV plant. IEEE Trans. Emerg. Top. Comput. Intell. 1(5), 375–390 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Ministry of Education (Govt. of India) and CPRI-funded project: EE/PB/CPRI/2022/8.85 for supporting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smruti P. Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dash, S.P., Khandeparkar, K.V. (2023). A False Data Injection Attack on Data-Driven Strategies in Smart Grid Using GAN. In: Fujita, H., Wang, Y., Xiao, Y., Moonis, A. (eds) Advances and Trends in Artificial Intelligence. Theory and Applications. IEA/AIE 2023. Lecture Notes in Computer Science(), vol 13926. Springer, Cham. https://doi.org/10.1007/978-3-031-36822-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36822-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36821-9

  • Online ISBN: 978-3-031-36822-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics