Skip to main content

Engineering of Trust Analysis-Driven Digital Twins for a Medical Device

  • Conference paper
  • First Online:
Software Architecture. ECSA 2022 Tracks and Workshops (ECSA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13928))

Included in the following conference series:

  • 313 Accesses

Abstract

The DT paradigm has emerged as a suitable way to cope with the complexity of analyzing, controlling, and adapting complex systems in diverse domains. For medical systems, however, the DT paradigm is not fully exploited mainly due to the complexity of dealing with uncertain human behavior, and of preventing sensitive information leakage (e.g., patient personal medical profiles).

We present the first results of a long-term recently launched research aiming at engineering a DT for a medical device endowed with trust analyses techniques able to deal with human and environmental uncertainty, and security protection.

As a proof of concept, we apply our DT vision to the case study of a mechanical ventilator developed for Covid 19 patient care. The long-term aim is engineering a new generation of lung ventilators where the use of a DT can prevent unreliability and untrustworthiness of a system where interactions, both physical (machine-patient) and operational (machine-medical staff), are characterized by the presence of uncertainty and vulnerabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://azure.microsoft.com/en-us/services/digital-twins/.

  2. 2.

    https://zeromq.org/.

References

  1. ASMETA (ASM mETAmodeling) toolset, https://asmeta.github.io/

  2. Functional Mock-up Interface, https://fmi-standard.org/

  3. Abba, A., et al.: The novel Mechanical Ventilator Milano for the COVID-19 pandemic. Physics of Fluids 33(3), 037122 (mar 2021). https://doi.org/10.1063/5.0044445

  4. Ahmed, H., Devoto, L.: The potential of a digital twin in surgery. Surgical Innovation 28, 509-/510 (12 2020). https://doi.org/10.1177/1553350620975896

  5. Bencomo, N., Götz, S., Song, H.: Models@run.time: a guided tour of the state of the art and research challenges. Software & Systems Modeling 18(5), 3049–3082 (2019). https://doi.org/10.1007/s10270-018-00712-x

    Article  Google Scholar 

  6. Bersani, M.M., Braghin, C., Cortellessa, V., Gargantini, A., Grassi, V., Presti, F.L., Mirandola, R., Pierantonio, A., Riccobene, E., Scandurra, P.: Towards trust-preserving continuous co-evolution of digital twins. In: 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C). pp. 96–99 (2022). https://doi.org/10.1109/ICSA-C54293.2022.00024

  7. Bombarda, A., Bonfanti, S., Gargantini, A., Riccobene, E.: Developing a prototype of a mechanical ventilator controller from requirements to code with ASMETA. In: Proceedings First Workshop on Applicable Formal Methods, AppFM@FM 2021, virtual, 23rd November 2021. EPTCS, vol. 349, pp. 13–29 (2021). https://doi.org/10.4204/EPTCS.349.2

  8. Bonfanti, S., Riccobene, E., Scandurra, P.: A component framework for the runtime enforcement of safety properties. Journal of Systems and Software 198, 111605 (2023). https://doi.org/10.1016/j.jss.2022.111605

    Article  Google Scholar 

  9. Bonivento, W., Gargantini, A., Krücken, R., Razeto, A.: The Mechanical Ventilator Milano. Nuclear Physics News 31(3), 30–33 (2021). https://doi.org/10.1080/10619127.2021.1915047

    Article  Google Scholar 

  10. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer, Berlin, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

  11. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and Analysis. Springer Verlag (2003)

    Google Scholar 

  12. Camilli, M., Mirandola, R., Scandurra, P.: Runtime equilibrium verification for resilient cyber-physical systems. In: IEEE International Conference on Autonomic Computing and Self-Organizing Systems, ACSOS 2021, Washington, DC, USA, September 27 - Oct. 1, 2021. pp. 71–80. IEEE (2021). https://doi.org/10.1109/ACSOS52086.2021.00025

  13. Campbell, D., Brown, J.: The Electrical Analogue of Lung. British Journal of Anaesthesia 35(11), 684–692 (nov 1963). https://doi.org/10.1093/bja/35.11.684

  14. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC tutorial. International Journal on Software Tools for Technology Transfer 17(4), 397–415 (2015). https://doi.org/10.1007/s10009-014-0361-y

    Article  Google Scholar 

  15. van Diepen, A., Bakkes, T.H.G.F., De Bie, A.J.R., Turco, S., Bouwman, R.A., Woerlee, P.H., Mischi, M.: A Model-Based Approach to Synthetic Data Set Generation for Patient-Ventilator Waveforms for Machine Learning and Educational Use. Journal of Clinical Monitoring and Computing (2022). https://doi.org/10.1007/s10877-022-00822-4

    Article  Google Scholar 

  16. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reaction. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification - Introductory and Advanced Topics, LNCS, vol. 10457, pp. 103–134. Springer (2018). https://doi.org/10.1007/978-3-319-75632-5_4

  17. Fitzgerald, J., Larsen, P.G., Margaria, T., Woodcock, J.: Engineering of digital twins for cyber-physical systems. In: ISoLA 2020. p. 49–53. Springer-Verlag, Berlin, Heidelberg (2020). https://doi.org/10.1007/978-3-030-83723-5_4

  18. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: Enabling technologies, challenges and open research. IEEE Access 8, 108952–108971 (2020). https://doi.org/10.1109/ACCESS.2020.2998358

    Article  Google Scholar 

  19. Gargantini, A., Riccobene, E., Scandurra, P.: A Metamodel-based Language and a Simulation Engine for Abstract State Machines. J. UCS 14(12) (2008). https://doi.org/10.3217/jucs-014-12-1949

  20. Heinrich, R., Durán, F., Talcott, C.L., Zschaler, S. (eds.): Composing Model-Based Analysis Tools. Springer (2021). https://doi.org/10.4230/DagRep.9.11.97

  21. Huiskamp, W., van den Berg, T.: Federated Simulations, pp. 109–137. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-51043-9_6

  22. Jimenez, J.I., Jahankhani, H., Kendzierskyj, S.: Health Care in the Cyberspace: Medical Cyber-Physical System and Digital Twin Challenges, pp. 79–92. Springer International Publishing, Cham (2020). DOI: https://doi.org/10.1007/978-3-030-18732-3_6

  23. Kirchhof, J.C., Michael, J., Rumpe, B., Varga, S., Wortmann, A.: Model-Driven Digital Twin Construction: Synthesizing the Integration of Cyber-Physical Systems with Their Information Systems. In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems. p. 90–101. MODELS ’20, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3365438.3410941

  24. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018). https://doi.org/10.1016/j.ifacol.2018.08.474, 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018

  25. Lestingi, L., Askarpour, M., Bersani, M.M., Rossi, M.: Formal Verification of Human-Robot Interaction in Healthcare Scenarios. In: de Boer, F., Cerone, A. (eds.) Software Engineering and Formal Methods. pp. 303–324. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58768-0_17

  26. Lestingi, L., Sbrolli, C., Scarmozzino, P., Romeo, G., Bersani, M.M., Rossi, M.: Formal modeling and verification of multi-robot interactive scenarios in service settings. In: 2022 IEEE/ACM 10th International Conference on Formal Methods in Software Engineering (FormaliSE). pp. 80–90 (2022). https://doi.org/10.1145/3524482.3527653

  27. Lilli, M., Braghin, C., Riccobene, E.: Formal Proof of a Vulnerability in Z-Wave IoT Protocol. In: Proc. of Int. Conf. on Security and Cryptography - SECRYPT, pp. 198–209 (2021). https://doi.org/10.5220/0010553301980209

  28. Mirandola, R., Potena, P., Riccobene, E., Scandurra, P.: A reliability model for service component architectures. J. Syst. Softw. 89, 109–127 (2014). https://doi.org/10.1016/j.jss.2013.11.002

    Article  Google Scholar 

  29. Redelinghuys, A.J.H., Basson, A.H., Kruger, K.: A six-layer architecture for the digital twin: a manufacturing case study implementation. Journal of Intelligent Manufacturing 31(6), 1383–1402 (2019). https://doi.org/10.1007/s10845-019-01516-6

    Article  Google Scholar 

  30. Riccobene, E., Scandurra, P.: Model-based simulation at runtime with abstract state machines. In: Communications in Computer and Information Science, pp. 395–410. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-59155-7_29

  31. Signoret, J.P., Leroy, A.: Reliability Block Diagrams (RBDs), pp. 195–208. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-64708-7_15

  32. Talcott, C., Ananieva, S., Bae, K., Combemale, B., Heinrich, R., Hills, M., Khakpour, N., Reussner, R., Rumpe, B., Scandurra, P., Vangheluwe, H.: Composition of Languages, Models, and Analyses, pp. 45–70. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-81915-6<_4

  33. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics 15(4), 2405–2415 (2019). https://doi.org/10.1109/TII.2018.2873186

    Article  Google Scholar 

  34. Van Tendeloo, Y., Van Mierlo, S., Vangheluwe, H.: A Multi-Paradigm Modelling approach to live modelling. Software & Systems Modeling 18(5), 2821–2842 (2018). https://doi.org/10.1007/s10270-018-0700-7

    Article  Google Scholar 

  35. Weyns, D.: Software engineering of self-adaptive systems. In: Cha, S., Taylor, R.N., Kang, K.C. (eds.) Handbook of Software Engineering, pp. 399–443. Springer (2019). https://doi.org/10.1007/978-3-642-02161-9_1

  36. Yue, T., Arcaini, P., Ali, S.: Understanding digital twins for cyber-physical systems: A conceptual model. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. Lecture Notes in Computer Science, vol. 12479, pp. 54–71. Springer (2020). https://doi.org/10.1007/978-3-030-83723-5_5

Download references

Acknowledgment

This work was partially supported by project SERICS (PE00000014) under the NRRP MUR program funded by the EU - NextGenerationEU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Scandurra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bersani, M.M., Braghin, C., Gargantini, A., Mirandola, R., Riccobene, E., Scandurra, P. (2023). Engineering of Trust Analysis-Driven Digital Twins for a Medical Device. In: Batista, T., Bureš, T., Raibulet, C., Muccini, H. (eds) Software Architecture. ECSA 2022 Tracks and Workshops. ECSA 2022. Lecture Notes in Computer Science, vol 13928. Springer, Cham. https://doi.org/10.1007/978-3-031-36889-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36889-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36888-2

  • Online ISBN: 978-3-031-36889-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics