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Abstract. The recombination problem is inspired by genome rearrange-
ment events that occur in bacteriophage populations. Its goal is to ex-
plain how to transform a bacteriophage population into another using
the minimum number of recombinations. Here we show that the general
combinatorial problem is NP-Complete, both when the target population
contains only one genome of unbounded length, and when the size of the
genomes is bounded by a constant. In the first case, the existence of a
minimum solution is shown to be equivalent to a 3D-matching problem,
and in the second case, to a satisfiability problem. These results imply
that the comparison of bacteriophage populations using recombinations
will have to rely on heuristics that exploit biological constraints.

1 Introduction

Genetic recombinations or, more generally, the exchange of DNA material be-
tween organisms, have been a source of computational problems since the 1865
report of Gregor Mendel on plant hybridization [1]. Recombinations occur in
the reproduction of all living organisms, including asexual reproduction, and are
fundamental producers of diversity. In this paper, we study the computational
complexity of problems related to modular recombination, which is a form of
exchange pervasive in viruses that infect bacteria, called phages.

The biological theory of modular recombination was proposed a few decades
ago by Botstein [4], who envisioned “ ... viruses as belonging to large interbreeding
families, members of which share only a common genome organization consist-
ing of interchangeable genetic elements each of which carries out an essential
biological function.” The common genome organization that Botstein refers to
is the preservation of the order of biological functions, called modules, along the
virus genome, although the actual sequences that carry the function may diverge
substantially.

The computational models were slower to emerge, since genomic data about
“large interbreeding families” were not commonplace until a few years ago. In
2010 a study of a few dozen sequenced strains of Staphyloccoccus aureus was con-
ducted [9], and a scenario of interbreeding was inferred on the population [14].
The recent availability of other datasets monitoring phage populations evolving
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through time [11,12] or space [7,13] suggested the problem of computing the min-
imum number of recombination events that transforms one population of phages
into another. In a previous paper [2] we developed a heuristic with approxima-
tion bounds based on certain properties of the input and found that, on phages
infecting bacteria responsible for cheese fermentation, our heuristic performed
well. The question remained, however, as to the computational complexity of
the optimization problem.

We answer that question in this article, showing that two basic problems
related to the comparison of phage populations are computationally difficult. The
first one reduces the problem of finding a perfect 3D-matching to reconstructing
a single phage, from a population of phages that represents the triples of the
3D matching instance, with a minimum number of recombinations. The second
one reduces a variant of a classic satisfiability problem to the reconstruction of a
population of phages, with only 4 modules that represent variables and clauses,
with a minimum number of recombinations.

2 Basic definitions and properties

Phage genomes can adopt either a circular or linear or shape during their life
cycle. Genomic data found in databases are linearized by choosing, as a starting
point, one module shared by all members of a family, yielding the following
representation of phages.

Given an alphabet A, a phage p with n modules can be represented by
p = p[0..n− 1] where p[a] ∈ A. The recombination operation at positions a and
b between two phages p and q :

p = p[0..a− 1]|p[a..b− 1]|p[b..n− 1]

q = q[0..a− 1]|q[a..b− 1]|q[b..n− 1]

yields new phages c and d:

c = p[0..a− 1]|q[a..b− 1]|p[b..n− 1]

d = q[0..a− 1]|p[a..b− 1]|q[b..n− 1].

Positions a and b are called the breakpoints of the recombination. The re-
combining phages are called parents, and the newly constructed phages, their
children. This relation allows us, when several recombinations are considered, to
refer to descendants and ancestors, of both phages and positions; each recombi-
nation creates two descendants to the two parents, while the each character in
each of the children has exactly one ancestral character from the parents. Note
that, naturally, ancestor and descendant relationships are transitive through the
generations.

A recombination scenario S from P to Q is a sequence of recombinations
that constructs all phages of Q using phages of P and their descendants. Note
that no phage is discarded in the process, in the sense that P grows until it is a
superset of Q.
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The problem that we address in this article is the following:

Input: Populations P and Q of equal-length phages, and an integer r.
Question: Does there exist a recombination scenario S from P to Q of

length at most r?

Minimum Phage Population Reconstruction (MinPPR)

A break in a phage q with respect to the set of phages P is a position b such
that for all parents p in P, p[b−1..b] ̸= q[b−1..b]. A recombination heals a break
b of a phage q if it creates a child c such that c[b− 1..b] = q[b− 1..b]. In order to
be healed, a break b must be one of the breakpoints of the recombination.

Since a recombination can heal at most two breaks in a single phage, if a
phage q has n breaks with respect to the set of phages P, then the minimum
number of recombinations to construct q is

⌊
n+1
2

⌋
.

A crucial remark is that, even if all the breaks are healed, the reconstruction
of a phage q with n = 2r breaks with respect to a set of parents might require
more than r recombinations. This is the case, for example, if two parents p1 =
10111 and p2 = 11101 are used to reconstruct q = 11111: phage q has no break
with respect to the set {p1, p2}, but one recombination is necessary to reconstruct
q. This recombination must cut an already healed break in p1 or p2, and we say
that the break is reused.

Definition 1. In a recombination scenario, a break is said to be reused if it is
a breakpoint of more than one recombination in the scenario.

Finally, there is an easy upper bound for the number of recombination nec-
essary to reconstruct a phage:

Proposition 1. If there exists a scenario that reconstructs a phage q with n
modules from a population P, then there exists one of length at most n− 1.

Proof. A scenario exists if, for each position b, there exists a phage pb ∈ P
such that pb[b] = q[b], otherwise no recombination can produce the value q[b] at
position b. We first recombine p0 and p1 using breakpoints 1 and 2, to produce
a child that equals q on its first 2 positions, and proceed in a similar way up to
position n− 1. ⊓⊔

Here we study the decision problem where one asks if Q can be generated
from P using at most r recombinations, for some given r. Let us first argue
that the problem is in NP. A given scenario of r recombinations can be verified
in time proportional to r, |P|, and |Q|, but this is not polynomial if r is not
polynomial in |P| and |Q| (e.g. if r is exponential). However, Proposition 1 gives
an upper bound on the number of required recombinations based on the number
of modules. Hence, we may assume that r is bounded by a polynomial in |P|
and |Q| and a scenario can be verified in polynomial time, and thus the problem
is in NP.
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3 Reconstructing one target genome

We first consider the case in which the population Q consists of a single phage
of unbounded length. We reduce the 3D-Perfect-Matching problem to it,
where we receive a set of triples T = {(i1, j1, k1), . . . , (in, jn, kn)} ⊆ [1..m]3,
where m ≥ 2 is an integer [10]. The goal is to find a subset T ′ ⊆ T of size m
such that for any two distinct (i, j, k), (i′, j′, k′) ∈ T ′, we have i ̸= i′, j ̸= j′, and
k ̸= k′. Such a set T ′ is called a perfect 3D-matching.

Since there is a single phage in Q, the alphabet is the set {0, 1}, and Q =
11111 . . . 1111 will be the only element of the target population. We consider the
following phages, each of length 15m+2, that form the input population P. See
example in Figure 1.

1. For each element (i, j, k) ∈ T , we construct a phage Pijk that has three 1’s
in positions 5i, 5j + 5m and 5k + 10m, and 0’s elsewhere.

2. For each element (i, j, k) ∈ T , we associate three phages, Pij-, P-jk, and Pi-k
with two 1’s respectively in positions 5i + 1 and 5j − 1 + 5m, 5j + 1 + 5m
and 5k − 1 + 10m, 5i− 1 and 5k + 1 + 10m, and 0’s elsewhere.

3. P̂ has 0’s in every position in which one of the above phages has a 1.

i = 1 i = 2 j = 1 j = 2 k = 1 k = 2
P122 . . . . 1 . . . . . . . . . . . . . . 1 . . . . . . . . . 1 . .
P212 . . . . . . . . . 1 . . . . 1 . . . . . . . . . . . . . . 1 . .
P211 . . . . . . . . . 1 . . . . 1 . . . . . . . . . 1 . . . . . . .
P222 . . . . . . . . . 1 . . . . . . . . . 1 . . . . . . . . . 1 . .

P22- . . . . . . . . . . 1 . . . . . . . 1 . . . . . . . . . . . . .
P12- . . . . . 1 . . . . . . . . . . . . 1 . . . . . . . . . . . . .
P21- . . . . . . . . . . 1 . . 1 . . . . . . . . . . . . . . . . . .

P-22 . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . 1 . . .
P-12 . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . 1 . . .
P-11 . . . . . . . . . . . . . . . 1 . . . . . . . 1 . . . . . . . .

P2-2 . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . 1 .
P1-2 . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 .
P2-1 . . . . . . . . 1 . . . . . . . . . . . . . . . . 1 . . . . . .

P̂ 1 1 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 1: Example input with T = {(1, 2, 2), (2, 1, 2), (2, 1, 1), (2, 2, 2)} and m = 2.
The 1’s related to phage P222 are in red. Dots are used to represent the value 0,
in order to better highlight the relative positions of the 1’s.
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We show that T has a 3D-matching if and only if P can generate Q with at
most 6m recombinations, implying:

Theorem 1. The Minimum Phage Population Reconstruction problem
is NP-complete, even when population Q has a single phage.

We have already established that the problem is in NP. For NP-hardness,
we show that there exists a 3D-matching T ′ ⊆ T if and only if it is possible to
reconstruct Q from P using at most 6m recombinations.

3.1 The (⇒) direction

Suppose that there is a 3D-matching T ′ ⊆ T . For each (i, j, k) ∈ T ′, it is
possible to apply three recombinations to Pijk, Pij-, P-jk and Pi-k to obtain
00 . . . 01110 . . . 01110 . . . 01110, where the first 111 is centered at column i, the
second 111 is centered at column j, the third 111 is centered at column k. The
genome P̂ has 000 in these three triples of positions, and so with three more
recombinations we can bring in these 111 into P̂ . Use Figure 2 as an illustration.
This costs 6 events. Since T ′ is a perfect 3D-matching, we can repeat this m
times to fill in all the remaining 000’s in P̂ , hence achieving cost 6m.

3.2 The (⇐) direction

We next show that if Q can be reconstructed from P using at most 6m recombi-
nations, then T admits a 3D-matching. We first establish several properties that
hold in general for scenarios that transform P into Q, before proving the main
result of the section.

Given a scenario S that reconstructs phage Q, we identify the following
subsets of parents:

1. Sijk contains phages of the form Pijk that belong to the scenario.
2. Sxy contains phages of the form Pij-, P-jk or Pi-k that belong to the scenario.

Let P = Sijk∪Sxy∪{P̂} be the set of parents that initially belong to scenario
S. We prove that scenario S reconstructs phage Q in 6m recombinations only if
the set Sijk corresponds to a perfect matching.

By construction, phage Q has 12m breaks with respect to the set of phages
P. Since a recombination can heal at most two breaks of a single phage, we need
at least 6m recombinations to reconstruct Q. In a scenario of length 6m, no
break can be reused.

We distinguish two types of breaks: red breaks connect a phage in Sxy to
a phage in Sijk, and green breaks connect a phage in Sxy to phage P̂ , (see
Figure 2). We say that a recombination is red when its two breaks are red, and
green if they are green. There is an equal number of red and green breaks in Q,
thus, in a scenario of length 6m, the number of red recombinations is equal to
the number of green recombinations, and is at most 3m, allowing for eventual
red-green recombinations.
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Fig. 2: Red and green breaks. Red breaks connect a phage in Sxy to a phage in
Sijk, and green breaks connect a phage in Sxy to phage P̂ . Phage Q has 6m red
breaks and 6m green breaks.

The following easy result links properties of a recombination scenario to the
existence of a perfect matching:

Lemma 1. In any scenario that reconstructs Q, |Sijk| ≥ m. If |Sijk| = m, then
the set {(i, j, k)|Pijk ∈ Sijk} is a perfect matching.

Proof. In order to reconstruct Q, all values of i, j and k ∈ [1..m] must appear at
least once in the indices of elements Pijk ∈ Sijk, thus |Sijk| ≥ m. If |Sijk| = m,
then all values of i, j and k ∈ [1..m] appear exactly once implying that the
set {(i, j, k)|Pijk ∈ Sijk} corresponds to a perfect matching. See Figure 3 for an
example. ⊓⊔

In order to show that |Sijk| = m, we first introduce three lemmas that con-
strain the order of recombinations contained in a scenario of length 6m. The first
one concerns the red interval of a phage in Sxy, which contains the 0’s adjacent
to its red breaks, along with the (circularly) intervening columns that are all 0’s.
See Figure 4 for an example of a red interval.

Lemma 2 (red interval). All descendants of a phage p ∈ Sxy must heal red
breaks shared with p before acquiring a 1 in p’s red interval.

Proof. Consider a descendant of p where one of its red breaks b is not yet healed,
along with the first recombination producing a child c that contains b and a 1
in p’s red interval. If this recombination does not heal b, then it must first heal
a break between b and the 1 in p’s red interval, thereby creating a phage c
containing both the 1, and the break b. This implies that the second break β
of this recombination must be in p’s red interval, which is a contradiction since
the second break cannot be healed in an interval with all 0’s. See Figure 4 for
an illustration. ⊓⊔

The second lemma establishes the property that all four breaks spanning two
consecutive groups of 1’s in P̂ will be healed in the same ancestral lineage of Q.
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i = 1 i = 2 j = 1 j = 2 k = 1 k = 2
P122 . . . . 1 . . . . . . . . . . . . . . 1 . . . . . . . . . 1 . .
P211 . . . . . . . . . 1 . . . . 1 . . . . . . . . . 1 . . . . . . .

P12- . . . . . 1 . . . . . . . . . . . . 1 . . . . . . . . . . . . .
P21- . . . . . . . . . . 1 . . 1 . . . . . . . . . . . . . . . . . .

P-11 . . . . . . . . . . . . . . . 1 . . . . . . . 1 . . . . . . . .
P-22 . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . 1 . . .

P1-2 . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 1 .
P2-1 . . . . . . . . 1 . . . . . . . . . . . . . . . . 1 . . . . . .

P̂ 1 1 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1

Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 3: A possible output for the example of Figure 1, with the sets Sijk and
Sxy used by a recombination scenario of length 6m = 12. Here |Sijk| = m, and
{(1, 2, 2), (2, 1, 1)} is a perfect matching.

...0 0 0•1• •1•0 0•0 0 0...
b

1•

...•1...

Fig. 4: A recombination between a descendant d of p ∈ Sxy and a phage p′. The
recombination creates phage c, in blue, which contains both break b and a 1
from a phage p′, where the 1 is located in a column from p’s red interval. This
recombination must have one breakpoint between b and the other red break of
p, and one breakpoint β after the location of the 1 in phage p′. Breakpoint β
cannot heal a break because it is between two 0’s.
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Lemma 3 (sticky breaks). Consider a break that is healed when phage p is
produced by a recombination in a scenario of length 6m. Any adjacent break must
be healed in a descendant of p.

Proof. Consider the 1 in column x that is adjacent to a single healed break in
phage p, so that p[x − 1..x + 1] = 110, or p[x − 1..x + 1] = 011. Consider the 1
that is put in column x + 1, or x − 1, while healing the remaining break with
column x, producing some child c. Since any break is healed exactly once, the
1’s to either side of a healed break must be ancestors of 1’s in Q. Therefore, the
1 in column x of both phages p and c must be the ancestor of a 1 in Q, which is
only possible if c is a descendant of p. ⊓⊔

Lemma 4 (independent Sxy). Consider phages p1 and p2 in Sxy. There can-
not exist a descendant of both phages with an unhealed red break from both p1
and p2.

Proof. Define the green interval of a phage p ∈ Sxy to be the interval containing
the 0’s next to the green breaks in p, along with the (circularly) intervening
columns that are all 0’s. If the green intervals of p1 and p2 do not intersect, the
red interval lemma gives the result, since there can be no 1 in either red interval
before both of the red breaks in a phage are healed.

Suppose their green intervals intersect and, without loss of generality, that
the green interval for p1 starts to the left of the green interval of p2. Say that
there is a descendant containing the left 1 of p1 and the left 1 of p2. The red
interval lemma implies that a recombination happened directly to the left of the
1 in p2, which healed that red break. Say that there is a descendant with the
left 1 of p1 and the right 1 of p2. Due to the red interval lemma, this implies a
recombination happened directly to the right of the 1 in p2, which healed that
red break. By symmetry, the other cases are covered by those already listed. ⊓⊔

The next lemma states a desirable property of recombination scenarios of
length 6m, saying that if a phage is in Sxy, then its two – unique – siblings are
also in Sxy. We say that phages p and p′ eventually recombine in a scenario S if
there exists a recombination in S between p, or one of its descendants, and p′,
or one of its descendants.

Lemma 5. In a scenario S of length 6m, if a phage Pijk ∈ Sijk eventually
recombines using the red breaks of a phage in Sxy, then all three phages Pij-,
P-jk and Pi-k eventually recombine with Pijk using both of their red breaks.

Proof. Consider the first time that a phage Pijk appears in scenario S, and
suppose that this recombination involves a phage in Sxy, or its descendant.
Without loss of generality we may assume this phage is Pi-k, due to the circularity
of the genomes and symmetry of our construction. We will show that both Pij-
and P-jk must eventually recombine with Pijk in the scenario, using both of their
red breaks.

By the lemma statement, both red breaks of Pi-k were healed in this recombi-
nation producing some child c, having only 0’s between columns i and k, with the
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exception of column j. See Figure 5 for an illustration. Now, the recombination
healing the remaining red break adjacent to column i must be in a descendant
of c, due to the sticky breaks lemma. Aside from the descendant of c, the other
parent p in this recombination must be a descendant of some phage Pij′- ∈ Sxy,
for some j′.

In the following, we show that the only possible companion breakpoint for
this recombination occurs when Pij′- = Pij-. Since every recombination must
heal two breaks, there is a companion breakpoint between columns i and j,
between columns j and k, or (circularly) between columns k and i.

If the companion breakpoint lies (circularly) between k and i, this implies
that p has a 1 in the red interval of Pij′-, which is impossible by Lemma 2.

Say the companion breakpoint lies between columns i and j. In order to
heal two breakpoints, there must be a break b between columns i and j in a
descendant p′ of c. If b is adjacent to j, then it can only be healed using a 1
descending from a phage in Sxy. If this phage is not Pij-, then the independent
Sxy lemma prohibits a common descendant between this phage and Pij′-, a
contradiction. Say b is not adjacent to j, but rather in the zone of all 0’s in
c. Then the existence of b implies that there has been a recombination at the
breakpoint adjacent to column j in an ancestor of p′. This leads to the same
contradiction as in the previous case.

The same argument applies to a breakpoint occurring between j and k.
Now consider the symmetric case, where a recombination heals the remaining

break adjacent to column k in phage c. The same reasoning shows that both red
breaks of P-jk are used to recombine with a descendant of Pijk. ⊓⊔

1•1•0 0 0

aefewf
0 0 0•1•0 0 0  0 0 0•1•1 ... •1 ...

range for j indices

•1 1• •1 1• 1•

j ki
...

... ...

c

p

... ...

Fig. 5: At the creation of child c, it has only 0’s between columns i and k, with
the exception of column j. The gray 1’s in p are possible breaks that can be
healed.

The previous lemma depends on the assumption that the first recombination
with a phage in Sijk heals the two red breaks of a phage in Sxy. The following
lemma show that this must be the case.
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Lemma 6. In a scenario S of length 6m, the first recombination using Pijk ∈
Sijk must heal both red breaks of a phage in Sxy, be it Pij-, P-jk, or Pi-k.

Proof. Since a phage Pijk ∈ Sijk has only red breaks, it must eventually re-
combine using exactly two red breaks, b1 and b2. Suppose that Pijk does not
eventually recombine with a single phage of Sxy, then b1 and b2 are breaks on
different phages p1 and p2 of Sxy. This implies that p1 and p2 eventually re-
combine to produce a child containing both b1 and b2. Such a recombination is
impossible, due to Lemma 2. ⊓⊔

Thus we have the result:

Proposition 2. A scenario S reconstructs Q in 6m recombinations only if the
set Sijk is a perfect matching.

Proof. Lemma 5 shows that for each Pijk in Sijk, the three corresponding Pij-,
P-jk and Pi-k must belong to the scenario. Since there are 3m pairs of red breaks,
the maximum number of elements of Sijk is m. Lemma 1 gives the result. ⊓⊔

4 NP-hardness for genomes of length 4

In the preceding section, we showed that the Minimum Phage Population
Reconstruction was hard when the length of the genomes was unbounded.
Is it still the case for genome of bounded length? The answer is yes, and we
dedicate the remainder of the section to the proof of the following statement:

Theorem 2. The Minimum Phage Population Reconstruction problem
is NP-complete, even when the genomes of P and Q have length 4.

We reduce from the Balanced-4Occ-SAT problem, where we are given
a boolean formula ϕ in conjunctive normal form, such that each variable has
exactly two positive occurrences in the clauses of ϕ, and exactly two negative
occurrences [3].

Consider an instance ϕ of Balanced-4Occ-SAT with variables x1, . . . , xn

and clauses C1, . . . , Cm. We construct a corresponding instance (P,Q, r) of the
phage problem. See Figure 6 for an example with 3 variables and 4 clauses, and
Figure 7 for a more abstract view.

The alphabet for the phages of P and Q has, for each variable xi, a corre-
sponding symbol i ∈ [1..n], and for each clause Cj , a corresponding symbol cj .
We also add two unique symbols ‘−’ and ‘◦’ to the alphabet.

Consider a variable xi, where i ∈ [1..n]. Let Cg, Ch be the clauses in which
xi occurs positively, and Cr, Cs those in which xi occurs negatively. Add the
following phages to P:

Xi = i ◦ i i

X+
i = cg i ch −

X−
i = cr i cs −
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and add the following to Q:

X∗
i = i i i i

Now for each clause Cj , j ∈ [1..m], add the following to P:

Dj,1 = − − cj cj

Dj,2 = cj − − cj

and add the following to Q:

D∗
j = cj ◦ cjcj

We show that ϕ is satisfiable if and only if Q can be reconstructed from P
with at most r = n+m recombinations.

3

X2 = 2 � 2 2
X�

2 = c2 2 c3 �
X⇤

2 = 2 2 2 2
q0 = c2 � c3 �

D2,1 = � � c2 c2

q0 = c2 � c3 �
D⇤

2 = c2 � c2 c2

� � c3 �

D4,2 = c4 � � c4

X+
3 = c2 3 c4 �
p = c4 3 c4 c4

c2 � � �

X3 = 3 � 3 3
p = c4 3 c4 c4

X⇤
3 = 3 3 3 3

D⇤
4 = c4 � c4 c4

 

3

X2 = 2 � 2 2
X�

2 = c2 2 c3 �
X⇤

2 = 2 2 2 2
q0 = c2 � c3 �

D2,1 = � � c2 c2

q0 = c2 � c3 �
D⇤

2 = c2 � c2 c2

� � c3 �

D4,2 = c4 � � c4

X+
3 = c2 3 c4 �
p = c4 3 c4 c4

c2 � � �

X3 = 3 � 3 3
p = c4 3 c4 c4

X⇤
3 = 3 3 3 3

D⇤
4 = c4 � c4 c4

 

2

X1 = 1 � 1 1
X+

1 = c1 1 c3 �
X⇤

1 = 1 1 1 1
q = c1 � c3 �

D1,1 = � � c1 c1

q = c1 � c3 �
D⇤

1 = c1 � c1 c1

� � c3 �

D3,2 = c3 � � c3

q = c1 � c3 �
D⇤

3 = c3 � c3 c3

c1 � � �

   

1

Clauses:
C1 : x1 _ x2 _ x3

C2 : x1 _ x2 _ x3

C3 : x1 _ x2 _ x3

C4 : x1 _ x2 _ x3

Coding the clauses:
X+

1 = c1 1 c3 �
X�

1 = c2 1 c4 �
X+

2 = c1 2 c4 �
X�

2 = c2 2 c3 �
X+

3 = c2 3 c4 �
X�

3 = c1 3 c3 �

Other phages in P:
Xi = i � i i
Dj,1 = � � cj cj

Dj,2 = cj � � cj

Phages of Q:
X⇤

i = i i i i
D⇤

j = cj � cj cj

2

3

2

X1 = 1 � 1 1
X+

1 = c1 1 c3 �
X⇤

1 = 1 1 1 1
q = c1 � c3 �

D1,1 = � � c1 c1

q = c1 � c3 �
D⇤

1 = c1 � c1 c1

� � c3 �

D3,2 = c3 � � c3

q = c1 � c3 �
D⇤

3 = c3 � c3 c3

c1 � � �

 

2

X1 = 1 � 1 1
X+

1 = c1 1 c3 �
X⇤

1 = 1 1 1 1
q = c1 � c3 �

D1,1 = � � c1 c1

q = c1 � c3 �
D⇤

1 = c1 � c1 c1

� � c3 �

D3,2 = c3 � � c3

q = c1 � c3 �
D⇤

3 = c3 � c3 c3

c1 � � �
  

1

3

X2 = 2 � 2 2
X�

2 = c2 2 c3 �
X⇤

2 = 2 2 2 2
q0 = c2 � c3 �

D2,1 = � � c2 c2

q0 = c2 � c3 �
D⇤

2 = c2 � c2 c2

� � c3 �

D4,2 = c4 � � c4

X+
3 = c2 3 c4 �
p = c4 3 c4 c4

c2 � � �

X3 = 3 � 3 3
p = c4 3 c4 c4

X⇤
3 = 3 3 3 3

D⇤
4 = c4 � c4 c4

 

3

X2 = 2 � 2 2
X�

2 = c2 2 c3 �
X⇤

2 = 2 2 2 2
q0 = c2 � c3 �

D2,1 = � � c2 c2

q0 = c2 � c3 �
D⇤

2 = c2 � c2 c2

� � c3 �

D4,2 = c4 � � c4

X+
3 = c2 3 c4 �
p = c4 3 c4 c4

c2 � � �

X3 = 3 � 3 3
p = c4 3 c4 c4

X⇤
3 = 3 3 3 3

D⇤
4 = c4 � c4 c4

 

Fig. 6: In this example there are n = 3 variables and m = 4 clauses, thus n+m =
7 phages in Q. One possible recombination scenario of length 7 is depicted. The
three recombinations in Group 1 first construct X∗

1 using X+
1 that asserts that

clauses 1 and 3 are satisfied when variable x1 is true. The resulting phage q is
then used to generate both D∗

1 and D∗
3 . In Group 2, X∗

2 and D∗
2 are constructed

using X−
2 that asserts that clause 2 is satisfied when when variable x2 is false.

Group 3 shows an alternative strategy that first constructs phage p = c4 3 c4 c4,
and uses it to simultaneously construct X∗

3 and D∗
4 .
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4.1 The (⇒) direction

Suppose that ϕ is satisfied by an assignment α : {x1, . . . , xn} → {true, false}
of the variables. Let us produce Q from P. For each i ∈ [1..n], if α(xi) = true,
then recombine Xi with X+

i by exchanging 2nd positions:

Xi = i ◦ i i
X+

i = cg i ch −
X∗

i = i i i i
p = cg ◦ ch −

This produces children X∗
i and p = cg ◦ch−, where Cg and Ch are the clauses

that are satisfied by setting xi to true. At this point, if D∗
g is not already in Q,

then recombine Dg,1 = −− cgcg with p = cg◦ch− by exchanging positions 1 and
2, thereby producing D∗

g :

Dg,1 = − − cg cg
p = cg ◦ ch −

D∗
g = cg ◦ cg cg

− − ch −

For an illustration of the previous two recombinations, see the black edges in
Figure 7. In the same way, if D∗

h is not already in Q, recombine Dh,2 = ch−−ch
with cj◦ch− by exchanging positions 2 and 3, which produces D∗

h.
If instead α(xi) = false, recombine Xi with X−

i by exchanging 2nd positions.
This creates X∗

i and cr ◦ cs−, where Cr and Cs are satisfied by setting xi to
false. Produce D∗

r and D∗
s , if not already there, as in the previous case.

Since every clause Cj is satisfied by α, for each D∗
j , there will be some Xi

in the above procedure that produces D∗
j . Moreover, there are exactly n + m

recombinations: one to produce each X∗
i , and one to produce each D∗

j .

4.2 The (⇐) direction

Suppose that there exists a sequence S = (R1, . . . , Rr) of at most r ≤ n+m re-
combinations that reconstructs Q. Let X = {X1, . . . , Xn} and D = {D1, . . . , Dm}
where Dj is either Dj,1 or Dj,2, whichever contains the character cj that is the
ancestor of the cj in the 4th position of D∗

j .
We define a function f : X ∪ D → S in the following way: set f(Xi) to the

first recombination that creates X∗
i , or an ancestor of X∗

i , with [1..n] in the 2nd
position and i in the 4th. Note that the parent used by f(Xi), having i in the
4th position, must also have {−, ◦} in the 2nd position, as otherwise there would
be a previous recombination with the required properties for being f(Xi).

Set f(Dj) to the first recombination that creates D∗
j , or an ancestor of D∗

j ,
with [1..n] ∪ {◦} in the 2nd position and cj in the 4th. As previously, note that
one of the parents used by f(Dj) contains ‘−’ in the 2nd position and cj in the
4th position.
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Fig. 7: An illustration of how phages Xi, X+
i , Dj,1, and Dh,2 can recombine to

produce X∗
i , D∗

j , and D∗
h. Recombinations are represented by pairs of arrows

that meet in the middle at a box with a ■× symbol. In black, Xi and X+
i first

recombine to produce q = cj ◦ ch−, which then recombines with Dj,1 to produce
D∗

j (and some other unused phage). Notice that q can also be used to produce
D∗

h in a similar manner. In dark gray, an alternate way to produce X∗
i and D∗

j is
depicted. Here, X+

i is first recombined with Dj,1 to produce p = cjicjcj . Phage
p is not in Q, but can be recombined with Xi to produce both X∗

i and D∗
j in

one operation.

Proposition 3. The function f is a bijection.

Proof. We prove that f is injective, and since there can be at most n + m
recombinations in S, we conclude that f is a bijection.

If i ̸= k, then f(Xi) ̸= f(Xk) since equality implies a recombination where
at least one parent has an element of {−, ◦} in 2nd position, and both children
have an element of [1..n].

If g ̸= h, then f(Dg) ̸= f(Dh) since equality implies a recombination where
at least one parent has a ‘−’ in 2nd position, and both children do not.

Finally, f(Xi) ̸= f(Dj) since equality implies a recombination where one
parent has a ‘−’ in 2nd position, and both children do not. ⊓⊔

The crucial consequences of Proposition 3 are the three following results:

Proposition 4. There is exactly one element of X ∪ D in each recombination
of S.

Proof. Since all phages of X ∪D are necessary to produce Q, then each one must
be used by at least one recombination. We show that the image of f contains no
recombination between two of these phages.
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Suppose Xi and Xk recombine. Then this recombination is not f(Xi) or
f(Xk) since both parents have a ‘◦’ in 2nd position, implying that none of the
children have an element of [1..n].

Suppose Dg and Dh recombine. Then this recombination is not f(Dg) or
f(Dh) because both parents have a ‘−’ in 2nd position, implying that both
children have a ‘−’ in 2nd position.

Suppose Xi and Dj are used in a recombination R. Then R is not f(Xi)
because one parent has a ‘◦’ in 2nd position, and the other has a ‘−’, implying
that none of the children have an element of [1..n]. So R must be f(Dj), implying
that one of the children p is an ancestor of D∗

j , having ◦ in 2nd position and cj in
4th position. In the remaining paragraph we show that there is no recombination
from S that makes the cj in 4th position of p the ancestor of the cj in 4th position
of D∗

j , contradicting the existence of R.
Consider any subsequent recombination R′ that uses p as a parent. Each R′

cannot be a f(Xi) since p cannot contribute an element of [1..n] in 2nd position,
so it must be f(Dh), for Dh ∈ D and h ̸= j. Note that the other parent q, used in
R′, must have ‘−’ in 2nd position and ch in 4th position, so the children are then
q′ with ◦ and ch in 2nd and 4th positions, and p′ with ‘−’ and cj in 2nd and 4th
positions. But, while p′ is the child that contains the cj that could be ancestral
to the 4th position of D∗

j , it cannot be used as a parent in a recombination of
f(X ∪D), since it has ‘−’ in 2nd position, and f(Dj) has already been applied.
Therefore, p′ is not an ancestor of D∗

j . This is true for any such child p′ produced
by a subsequent recombination, which contradicts that p is an ancestor of D∗

j .
This contradict our initial supposition that R is f(Dj). ⊓⊔
Corollary 1. The recombination that uses Xi produces X∗

i .

Proof. Note that Xi is the only phage in X ∪ D that shares any character with
X∗

i . Since both parents of any recombination creating X∗
i must share at least

one character with X∗
i , the recombination in S that uses Xi is the only one that

can create X∗
i . ⊓⊔

Corollary 2. The recombination that uses Dj produces either D∗
j or cjicjcj.

Proof. By definition Dj is an ancestor of D∗
j , and by Corollary 4 we know that

any descendant of Dj must recombine with an element of X ∪D. Since no other
member of X ∪D has cj in positions 1, 3 or 4, a child of Dj must be an ancestor
of D∗

j and have that character cj in those positions. This child must be either
D∗

j , p = cjicjcj , or q = cj − cjcj .
A subsequent recombination using child q = cj − cjcj does not exist since it

would either recombine with an Xk, but not produce X∗
k in contradiction with

Corollary 1, or with a Dh, whose 2nd position is also ‘−’. Therefore, q has no
descendant, contradicting that it is an ancestor of D∗

j . ⊓⊔
We now establish that a recombination scenario S of length n+m implies a

valid, and satisfiable truth assignment for ϕ.
For an Xi ∈ X , we say that Xi chose X+

i if the only recombination that
uses Xi is with an X+

i or its descendant, and we say that it chose X−
i if Xi
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recombined with X−
i or its descendant. If Xi chose X+

i , we set xi = true, and
if Xi chose X−

i we set xi = false. Let us call the resulting assignment α, which
we claim is satisfying. We first argue that each xi is assigned only one value, and
then show that each clause is satisfied.

Proposition 5. A recombination scenario S of length n + m implies a valid,
and satisfiable truth assignment for ϕ.

Proof. We first show that the assignment α is well-defined, i.e. each variable xi

is assigned either true or false, but not both. Since each Xi chooses at least one
of X+

i or X−
i , we know that xi is assigned true or false. Assume now that xi is

assigned both. Then Xi chose both X+
i and X−

i , meaning that Xi recombines
with a phage that descends from both X+

i and X−
i . But the existence of this

phage requires a recombination between descendants of both X+
i and X−

i , which
contradicts Corollary 4.

We now show that each clause is satisfied by α. By Corollary 2, we know
that Dj,1 and Dj,2 do not recombine, and only one of the two, that we called
Dj , appears in S. Since Dj contributes at most two cj characters to D∗

j , the
third cj can only be a descendant of an X+

i or X−
i , since they are the only other

phages in P that may contain cj . By construction, this means that the clause
Cj is satisfied by the variable xi being set to the truth assignment implied by
the corresponding X+

i or X−
i . ⊓⊔

5 Conclusion

The notion of recombination used in this article is the same as the two-point
crossover function [8] used for characterizing fitness landscapes for the explo-
ration of genotypes. This two-point crossover has since been studied in a general
form as a k-point crossover [5]. While, to the best of our knowledge, there is no
work directly linking the area of fitness landscape exploration to the minimiza-
tion problem discussed in this article, we hope that these related areas can be
fused in the future.

In this paper, we showed that the Minimum Phage Population Recon-
struction is NP-Complete in two extreme cases: bounded length, and a single
target phage. Although negative, such results may come as a relief, since we
can turn our focus to algorithms that, by accounting for biological constraints,
could provide drastically reduced search spaces for parsimonious solutions. For
example, the use of other measures of evolution, or information about commu-
nity structure [6] might play a significant role in reducing the complexity of the
problem: after all, phages recombine all the time, and thrive doing so.
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