Abstract
Chromosomal inversions play an important role in genome evolution, speciation and adaptation of organisms to diverse environments. Mapping and characterization of inversion breakpoints can be useful for describing mechanisms of rearrangements and identification of genes involved in diversification of species. Mosquito species of the Maculipennis Subgroup include dominant malaria vectors and nonvectors in Eurasia, but breakpoint regions of inversions fixed between species have not been mapped to the genomes. Here, we use the physical genome mapping approach to identify breakpoint regions of the X chromosome inversions fixed between Anopheles atroparvus and the most widely spread sibling species An. messeae. We mapped breakpoint regions of two large nested fixed inversions (~13 Mb and ~ 10 Mb in size) using fluorescence in situ hybridization of 53 gene markers with polytene chromosomes of An. messeae. The DNA probes were designed based on gene sequences of the annotated An. atroparvus genome. The two inversions resulted in five syntenic blocks, of which only two syntenic blocks (encompassing at least 179 annotated genes in the An. atroparvus genome) changed their position and orientation in the X chromosome. Analysis of the An. atroparvus genome revealed enrichment of DNA transposons in sequences homologous to three of four breakpoint regions suggesting the presence of “hot spots” for rearrangements in mosquito genomes. Our study demonstrated that the physical genome mapping approach can be successfully applied to identification of inversion breakpoint regions in insect species with polytene chromosomes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Availability of Data and Materials
The data and materials used in this study data is archived in a publicly accessible repository (doi.org/https://doi.org/10.5281/zenodo.7749003).
References
Amos, B., et al.: VEuPathDB: The eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 50(D1), D898-911 (2022)
Anselmetti, Y., Duchemin, W., Tannier, E., Chauve, C., Bérard, S.: Phylogenetic signal from rearrangements in 18 Anopheles species by joint scaffolding extant and ancestral genomes. BMC Genomics 19(Suppl 2), 96 (2018)
Artemov, G.N., Bondarenko, S.M., Naumenko, A.N., Stegniy, V.N., Sharakhova, M.V., Sharakhov, I.V.: Partial-arm translocations in evolution of malaria mosquitoes revealed by high-coverage physical mapping of the Anopheles atroparvus genome. BMC Genomics 19(1), 278 (2018)
Artemov, G.N., et al.: New cytogenetic photomap and molecular diagnostics for the cryptic species of the malaria mosquitoes and from Eurasia. Insects 12(9) (2021). https://doi.org/10.3390/insects12090835
Artemov, G., Stegniy, V., Sharakhova, M., Sharakhov, I.: The development of cytogenetic maps for malaria mosquitoes. Insects 9(3), 121 (2018)
Artemov, G.N., et al.: A Standard photomap of ovarian nurse cell chromosomes in the European malaria vector Anopheles atroparvus. Med. Vet. Entomol. 29(3), 230–237 (2015)
Ayala, D., Ullastres, A., González, J.: Adaptation through chromosomal inversions in Anopheles. Front. Genet. 5(May), 129 (2014)
Ayala, D., Francisco, J., Coluzzi, M.: Chromosome speciation: humans, drosophila, and mosquitoes. Proc. Nat. Acad. Sci. United States America 102(Suppl 1), 6535–6542 (2005)
Cáceres, M., Ranz, J.M., Barbadilla, A., Long, M., Ruiz, A.: Generation of a widespread drosophila inversion by a transposable element. Science 285(5426), 415–418 (1999)
Charlesworth, B., Coyne, J.A., Barton, N.H.: The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. (1987). https://doi.org/10.1086/284701
Cheng, C., Kirkpatrick, M.: Inversions are bigger on the X chromosome. Mol. Ecol. 28(6), 1238–1245 (2019)
Connallon, T., Olito, C.: Natural selection and the distribution of chromosomal inversion lengths. Mol. Ecol. 31(13), 3627–3641 (2022)
Coulibaly, M.B., et al.: Segmental duplication implicated in the genesis of inversion 2Rj of Anopheles gambiae. PLoS ONE 2(9), e849 (2007)
Djadid, N.D., Gholizadeh, S., Tafsiri, E., Romi, R., Gordeev, M., Zakeri, S.: Molecular identification of palearctic members of Anopheles maculipennis in Northern Iran. Malar. J. 6(January), 6 (2007)
Flynn, J.M., et al.: RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. U.S.A. 117(17), 9451–9457 (2020)
Fontaine, M.C., et al.: Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science (2015). https://doi.org/10.1126/science.1258524
Giraldo-Calderón, G.I., et al.: VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res. 43(Database issue), D707–D713 (2015)
Gornostaeva, R.M., Danilov, A.V.: On ranges of the malaria mosquitoes (Diptera: Culicidae: Anopheles) of the maculipennis complex on the territory of Russia. Parazitologiia 36(1), 33–47 (2002)
Jetten, T.H., Takken, W.: Anophelism without malaria in Europe: a review of the ecology and distribution of the genus Anopheles. Wageningen Agric. Univ. Papers 94(5), 1–69 (1994)
Jiang, X., et al.: Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi. Genome Biol. (2014). https://doi.org/10.1186/s13059-014-0459-2
Kamali, M., Xia, A., Zhijian, T., Sharakhov, I.V.: A new chromosomal phylogeny supports the repeated origin of vectorial capacity in malaria mosquitoes of the Anopheles gambiae complex. PLoS Pathog. 8(10), e1002960 (2012)
Kirkpatrick, M.: How and why chromosome inversions evolve. PLoS Biol. 8(9) (2010). https://doi.org/10.1371/journal.pbio.1000501
Kirkpatrick, M., Barton, N.: Chromosome inversions, local adaptation and speciation. Genetics 173(1), 419–434 (2006)
Ling, A., Cordaux, R.: Insertion sequence inversions mediated by ectopic recombination between terminal inverted repeats. PLoS ONE 5(12), e15654 (2010)
Lobachev, K.S., Rattray, A., Narayanan, V.: Hairpin- and cruciform-mediated chromosome breakage: causes and consequences in eukaryotic cells. Front. Biosci. (2007). https://doi.org/10.2741/2381
Lonnig, W.-E., Saedler, H.: Chromosome rearrangements and transposable elements. Annu. Rev. Genet. 36(June), 389–410 (2002)
Lukyanchikova, V., et al.: Anopheles mosquitoes reveal new principles of 3D genome organization in insects. Nat. Commun. 13(1), 1960 (2022)
Naumenko, A.N., et al.: Chromosome and genome divergence between the cryptic Eurasian malaria vector-species Anopheles messeae and Anopheles daciae. Genes 11(2) (2020). https://doi.org/10.3390/genes11020165
Neafsey, D.E., et al.: Mosquito genomics. highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347(6217), 1258522 (2015)
Neph, S., et al.: BEDOPS: high-performance genomic feature operations. Bioinformatics 28(14), 1919–1920 (2012)
Nicolescu, G., Linton, Y.-M., Vladimirescu, A., Howard, T.M., Harbach, R.E.: Mosquitoes of the Anopheles maculipennis group (Diptera: Culicidae) in Romania, with the discovery and formal recognition of a new species based on molecular and morphological evidence. Bull. Entomol. Res. (2004). https://doi.org/10.1079/ber2004330
Ou, S., et al.: Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20(1), 275 (2019)
Ranz, J.M., et al.: Principles of genome evolution in the drosophila melanogaster species group. PLoS Biol. (2007). https://doi.org/10.1371/journal.pbio.0050152
Schwander, T., Libbrecht, R., Keller, L.: Supergenes and complex phenotypes. Current Biol. CB 24(7), R288–R294 (2014)
Sharakhova, M.V., Artemov, G.N., Timoshevskiy, V.A., Sharakhov, I.V.: Physical genome mapping using fluorescence in situ hybridization with mosquito chromosomes. Insect Genomics, 177–194 (2019)
Sharakhov, I.V., et al.: Breakpoint structure reveals the unique origin of an interspecific chromosomal inversion (2La) in the Anopheles gambiae complex. Proc. Natl. Acad. Sci. U.S.A. 103(16), 6258–6262 (2006)
Sharakhov, I.V.: Chromosome phylogenies of malaria mosquitoes. Tsitologiia 55(4), 238–240 (2013)
Sinka, M.E., et al.: The dominant Anopheles vectors of human malaria in Africa, Europe and the middle east: occurrence data, distribution maps and bionomic précis. Parasit. Vectors 3(December), 117 (2010)
Stegniĭ, V.N., Kabanova, V.M., Novikov, I.: Study of the karyotype of the malaria mosquito. Tsitologiia 18(6), 760–766 (1976)
Stegniy, V.N.: Population Genetics and Evolution of Malaria Mosquitoes, p. 137. Tomsk State University Publisher, Tomsk, Russia (1991)
Stegniy, V.N.: Genetic adaptation and speciation in sibling species of the Eurasian maculipennis complex. In: Steiner, W.W.M., Tabachnick, W.J., Rai, K.S., Narang, S. (eds.) Recent Developments in the Genetics of lnsect Disease Vectors, pp. 454–464. Stipes, Champaign, 111 (1982)
Tesler, G.: GRIMM: genome rearrangements web server. Bioinformatics 18(3), 492–493 (2002)
Thakare, A., et al.: The genome trilogy of Anopheles stephensi, an urban malaria vector, reveals structure of a locus associated with adaptation to environmental heterogeneity. Sci. Rep. 12(1), 3610 (2022)
Tubio, J.M.C., et al.: Evolutionary dynamics of the Ty3/gypsy LTR retrotransposons in the genome of Anopheles gambiae. PloS One 6(1), e16328 (2011)
Villoutreix, R., Ayala, D., Joron, M., Gompert, Z., Feder, J.L., Nosil, P.: Inversion breakpoints and the evolution of supergenes. Mol. Ecol. 30(12), 2738–2755 (2021)
Virtanen, P., et al.: Author correction: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17(3), 352 (2020)
Wicker, T., et al.: A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8(12), 973–982 (2007)
Xia, A., et al.: Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes. PLoS ONE (2010). https://doi.org/10.1371/journal.pone.0010592
Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., Madden, T.L.: Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinf. 13(June), 134 (2012)
Yurchenko, A.A., et al.: Phylogenomics revealed migration routes and adaptive radiation timing of holarctic malaria vectors of the maculipennis group (2022). https://doi.org/10.1101/2022.08.10.503503
Zhang, C., et al.: Understanding the regulation of overwintering diapause molecular mechanisms in culex pipiens pallens through comparative proteomics. Sci. Rep. 9(1), 1–12 (2019)
Zhang, S., et al.: Anopheles vectors in mainland china while approaching malaria elimination. Trends Parasitol. 33(11), 889–900 (2017)
Funding
Collection of mosquito samples and mapping experiments were supported by the Russian Science Foundation grant № 21-14-00182. Bioinformatics and statistical analyses were supported by the Tomsk State University Development Programme (Priority-2030).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Soboleva, E.S., Kirilenko, K.M., Fedorova, V.S., Kokhanenko, A.A., Artemov, G.N., Sharakhov, I.V. (2023). Physical Mapping of Two Nested Fixed Inversions in the X Chromosome of the Malaria Mosquito Anopheles messeae. In: Jahn, K., Vinař, T. (eds) Comparative Genomics. RECOMB-CG 2023. Lecture Notes in Computer Science(), vol 13883. Springer, Cham. https://doi.org/10.1007/978-3-031-36911-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-36911-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36910-0
Online ISBN: 978-3-031-36911-7
eBook Packages: Computer ScienceComputer Science (R0)