Skip to main content

TECD: A Transformer Encoder Convolutional Decoder for High-Dimensional Biomedical Data

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

In recent years, machine learning and deep learning methods have been increasingly explored in a variety of application domains, including healthcare. Despite the rapid advances in this field, several challenges still need to be addressed to properly model complex biomedical datasets, such as genomic datasets or physiological signals from wearable sensors, that exhibit a very high dimensionality, i.e., a high number of variables or features which can be mutually related. As evidenced by the literature, the induction of reliable predictive models becomes intrinsically harder as the data dimensionality increases. To give a contribution to this field, this paper explores a new deep learning approach that leverages the emerging paradigm of Transformers, which can capture long-range dependencies among the input features and combines them with a Convolutional Neural Network, which is suited for capturing local patterns and dependencies. The resulting architecture has shown very promising results on six biomedical datasets with high dimensionality (several thousands of features), paving the way for further research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://hilab.com.br/.

References

  1. Arik, S., Pfister, T.: TabNet: attentive interpretable tabular learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 6679–6687 (2021)

    Google Scholar 

  2. Berisha, V., et al.: Digital medicine and the curse of dimensionality. NPJ Digit. Med. 4(1), 153 (2021)

    Article  Google Scholar 

  3. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature Selection for High-Dimensional Data. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21858-8

    Book  Google Scholar 

  4. Budd, S., Robinson, E.C., Kainz, B.: A survey on active learning and human-in-the-loop deep learning for medical image analysis. Medical Image Anal. 71, 102062 (2021)

    Google Scholar 

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part I. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  6. Chai, J., Zeng, H., Li, A., Ngai, E.W.: Deep learning in computer vision: a critical review of emerging techniques and application scenarios. Mach. Learn. Appl. 6, 100134 (2021)

    Google Scholar 

  7. D’Ancona, G., et al.: Deep learning to detect significant coronary artery disease from plain chest radiographs AI4CAD. Int. J. Cardiol. 370, 435–441 (2022)

    Article  Google Scholar 

  8. Davenport, T., Kalakota, R.: The potential for artificial intelligence in healthcare. Future Healthc. J. 6(2), 94–98 (2019)

    Article  Google Scholar 

  9. Dessì, N., Pascariello, E., Pes, B.: Integrating ontological information about genes. In: 2014 IEEE 23rd International WETICE Conference, pp. 417–422. IEEE (2014)

    Google Scholar 

  10. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021, 3–7 May 2021, Austria (2021)

    Google Scholar 

  11. Elkahky, A.M., Song, Y., He, X.: A multi-view deep learning approach for cross domain user modeling in recommendation systems. In: WWW 2015 (2015)

    Google Scholar 

  12. Frank, E., Hall, M.A., Witten, I.H.: The WEKA Workbench. Online Appendix for ‘Data Mining: Practical Machine Learning Tools and Techniques’, 4th edn. Morgan Kaufmann (2016)

    Google Scholar 

  13. Gillies, C.E., Siadat, M.R., Patel, N.V., Wilson, G.D.: A simulation to analyze feature selection methods utilizing gene ontology for gene expression classification. J. Biomed. Inform. 46(6), 1044–1059 (2013)

    Article  Google Scholar 

  14. Gupta, S., Gupta, A.: Dealing with noise problem in machine learning data-sets: a systematic review. Procedia Comput. Sci. 161, 466–474 (2019)

    Article  Google Scholar 

  15. Hambali, M.A., Oladele, T.O., Adewole, K.S.: Microarray cancer feature selection: review, challenges and research directions. Int. J. Cogn. Comput. Eng. 1, 78–97 (2020)

    Google Scholar 

  16. Javaid, M., Haleem, A., Singh, R.P., Suman, R., Rab, S.: Significance of machine learning in healthcare: features, pillars and applications. Int. J. Intell. Netw. 3, 58–73 (2022)

    Google Scholar 

  17. Kalina, J.: Classification methods for high-dimensional genetic data. Biocybern. Biomed. Eng. 34(1), 10–18 (2014)

    Article  Google Scholar 

  18. Kaur, A.P., Singh, A., Sachdeva, R., Kukreja, V.: Automatic speech recognition systems: a survey of discriminative techniques. Multim. Tools Appl. 82(9), 13307–13339 (2023)

    Article  Google Scholar 

  19. Kilicarslan, S., Adem, K., Celik, M.: Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network. Med. Hypotheses 137, 109577 (2020)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. NIPS 2012, vol. 1, pp. 1097–1105 (2012)

    Google Scholar 

  21. Li, Y., Cai, W., Gao, Y., Li, C., Hu, X.: More than encoder: Introducing transformer decoder to upsample. In: Adjeroh, D.A., et al. (eds.) IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022, Las Vegas, NV, USA, 6–8 December 2022, pp. 1597–1602. IEEE (2022)

    Google Scholar 

  22. Loddo, A., Meloni, G., Pes, B.: Using artificial intelligence for COVID-19 detection in blood exams: a comparative analysis. IEEE Access 10, 119593–119606 (2022)

    Article  Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  24. Madsen, A., Reddy, S., Chandar, S.: Post-hoc interpretability for neural NLP: a survey. ACM Comput. Surv. 55(8), 155:1–155:42 (2023)

    Google Scholar 

  25. Padhi, I., et al.: Tabular transformers for modeling multivariate time series. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3565–3569. IEEE (2021)

    Google Scholar 

  26. Pes, B.: Learning from high-dimensional biomedical datasets: the issue of class imbalance. IEEE Access 8, 13527–13540 (2020)

    Article  Google Scholar 

  27. Pes, B.: Learning from high-dimensional and class-imbalanced datasets using random forests. Information 12, 286 (2021)

    Article  Google Scholar 

  28. Pes, B., Lai, G.: Cost-sensitive learning strategies for high-dimensional and imbalanced data: a comparative study. PeerJ Comput. Sci. 7, e832 (2021)

    Article  Google Scholar 

  29. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  30. Ray, P., Reddy, S.S., Banerjee, T.: Various dimension reduction techniques for high dimensional data analysis: a review. Artif. Intell. Rev. 54(5), 3473–3515 (2021). https://doi.org/10.1007/s10462-020-09928-0

    Article  Google Scholar 

  31. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  32. Sarker, I.H.: Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2(6), 420 (2021)

    Article  Google Scholar 

  33. Sevakula, R.K., Singh, V., Verma, N.K., Kumar, C., Cui, Y.: Transfer learning for molecular cancer classification using deep neural networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(6), 2089–2100 (2019)

    Article  Google Scholar 

  34. Shwartz-Ziv, R., Armon, A.: Tabular data: deep learning is not all you need. Inf. Fusion 81, 84–90 (2022)

    Article  Google Scholar 

  35. Singh, R., Lanchantin, J., Robins, G., Qi, Y.: DeepChrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics 32(17), i639–i648 (2016)

    Article  Google Scholar 

  36. Tiglic, G., Kokol, P.: Stability of ranked gene lists in large microarray analysis studies. J. Biomed. Biotechnol. 2010 (2010)

    Google Scholar 

  37. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4–9 December 2017, Long Beach, CA, USA, pp. 5998–6008 (2017)

    Google Scholar 

  38. Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Design Eng. 3(1), 24–36 (2016)

    Article  Google Scholar 

  39. Zedda, L., Loddo, A., Di Ruberto, C.: A deep learning based framework for malaria diagnosis on high variation data set. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) ICIAP 2022. LNCS, vol. 13232, pp. 358–370. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06430-2_30

    Chapter  Google Scholar 

  40. Zhang, C., Zhou, Y., Guo, J., Wang, G., Wang, X.: Research on classification method of high-dimensional class-imbalanced datasets based on SVM. Int. J. Mach. Learn. Cybern. 10, 1765–1778 (2019)

    Article  Google Scholar 

  41. Zhavoronkov, A., et al.: Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37(9), 1038–1040 (2019)

    Article  Google Scholar 

  42. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, 19–25 June 2021, pp. 6881–6890. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  43. Zou, H.: Classification with high dimensional features. Wiley Interdisc. Rev.: Comput. Stat. 11(1), e1453 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the ASTRID project (Fondazione di Sardegna, L.R. 7 agosto 2007, n\(^{\circ }\)7, CUP: F75F21001220007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Loddo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zedda, L., Perniciano, A., Loddo, A., Pes, B. (2023). TECD: A Transformer Encoder Convolutional Decoder for High-Dimensional Biomedical Data. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14104. Springer, Cham. https://doi.org/10.1007/978-3-031-37105-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37105-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37104-2

  • Online ISBN: 978-3-031-37105-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics