Skip to main content

Verification of the Domains Tracking Algorithm for Solving the System of Allen-Cahn and Cahn-Hilliard Equations

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

The sintering process is widely used in modern industry because it allows for obtaining materials with predefined properties. Chemical or physical techniques can measure these properties. Besides the cost of such methods, it is worth noting that some techniques destroy samples, which causes difficulties in measuring the parameters’ evolution. Computer simulation of the sintering process allows for overcoming these difficulties. The sintering models based on the system of Cahn-Hilliard and Allen-Cahn equations require optimization if the number of grains is large. However, optimizations affect the solution; thus, a detailed quality assessment is required. The article presents such a study for our optimization: the Allen-Cahn equations are solved in small subdomains of the whole computational domain, which change over time. We provide comparative tests between solutions obtained by our algorithm and solutions obtained by solving the system in the whole domain. Besides common approaches, we use powerful tools of topology: Hausdorff distance and Betti numbers. The choice of the algorithm parameters is justified by obtained accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, K., Pakarinen, J., Allen, T., El-Azab, A.: Phase field simulation of grain growth in porous uranium dioxide. J. Nuclear Mater. 446, 90–99 (2014). https://doi.org/10.1016/j.jnucmat.2013.11.036

  2. Allen, S., Cahn, J.: Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metallurgica 20(3), 423–433 (1972)

    Google Scholar 

  3. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: measuring errors between surfaces using the hausdorff distance. In: Proceedings. IEEE International Conference on Multimedia and Expo, vol. 1, pp. 705–708 (2002). https://doi.org/10.1109/ICME.2002.1035879

  4. Bazaikin, Y., Derevschikov, V., Malkovich, E., Lysikov, A., Okunev, A.: Evolution of sorptive and textural properties of cao-based sorbents during repetitive sorption/regeneration cycles: part ii. modeling of sorbent sintering during initial cycles. Chem. Eng. Sci. 199, 156–163 (2019). https://doi.org/10.1016/j.ces.2018.12.065, https://www.sciencedirect.com/science/article/pii/S0009250919300971

  5. Bazaikin, Y., Malkovich, E., Prokhorov, D., Derevschikov, V.: Detailed modeling of sorptive and textural properties of CaO-based sorbents with various porous structures. Sep. Purif. Technol. 255, 117746 (2021)

    Google Scholar 

  6. Bordia, R.K., Kang, S.J.L., Olevsky, E.A.: Current understanding and future research directions at the onset of the next century of sintering science and technology. J. Am. Ceram. Soc. 100(6), 2314–2352 (2017). https://doi.org/10.1111/jace.14919

    Article  Google Scholar 

  7. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958). https://doi.org/10.1063/1.1744102

  8. Edelsbrunner, H., Harer, J.: Computational topology: an introduction, January 2010. https://doi.org/10.1007/978-3-540-33259-6_7

  9. Fick, A.: Ueber diffusion. Annalen der Physik 170(1), 59–86 (1855)

    Google Scholar 

  10. Florin, N., Fennell, P.: Synthetic CaO-based sorbent for co2 capture, vol. 4, pp. 830–838 (2011). https://doi.org/10.1016/j.egypro.2011.01.126, https://www.sciencedirect.com/science/article/pii/S1876610211001287, 10th International Conference on Greenhouse Gas Control Technologies

  11. German, R.M.: Sintering Theory and Practice. John Wiley & Sons Inc., New York (1996)

    Google Scholar 

  12. Hötzer, J., et al..: Large scale phase-field simulations of directional ternary eutectic solidification. Acta Materialia 93, 194–204 (2015)

    Google Scholar 

  13. Hötzer, J., Seiz, M., Kellner, M., Rheinheimer, W., Nestler, B.: Phase-field simulation of solid state sintering. Acta Materialia 164 (2018). https://doi.org/10.1016/j.actamat.2018.10.021

  14. Jettestuen, E., Friis, H.A., Helland, J.O.: A locally conservative multiphase level set method for capillary-controlled displacements in porous media. J. Comput. Phys. 428, 109965 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. K.A. Gadylshina, T.S. Khachkova, V.L.: Numerical modeling of chemical interaction between a fluid and rocks. Numer. Methods Program. (Vychislitel’nye Metody i Programmirovanie) 20(62), 457–470 (2020). https://doi.org/10.26089/NumMet.v20r440, https://en.num-meth.ru/index.php/journal/article/view/1035

  16. Kim, S.G., Kim, D.I., Kim, W.T., Park, Y.B.: Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys. Rev. E 74, 061605 (2006)

    Google Scholar 

  17. Li, X., Huang, H., Meakin, P.: Level set simulation of coupled advection-diffusion and pore structure evolution due to mineral precipitation in porous media. Water Resour. Res. 44(12), W12407 (2008)

    Article  Google Scholar 

  18. Li, X., Huang, H., Meakin, P.: A three-dimensional level set simulation of coupled reactive transport and precipitation/dissolution. Int. J. Heat Mass Transf. 53(13), 2908–2923 (2010)

    Article  MATH  Google Scholar 

  19. Liu, Y.S., Yi, J., Zhang, H., Zheng, G.Q., Paul, J.C.: Surface area estimation of digitized 3d objects using quasi-monte carlo methods. Pattern Recognit. 43, 3900–3909 (2010). https://doi.org/10.1016/j.patcog.2010.06.002

  20. Lubachevsky, B.D., Stillinger, F.H.: Geometric properties of random disk packings. J. Stat. Phys. 60, 561–583 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marella, S., Krishnan, S., Liu, H., Udaykumar, H.S.: Sharp interface cartesian grid method i: an easily implemented technique for 3d moving boundary computations. J. Comput. Phys. 210(1), 1–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37(1), 239–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moelans, N., Wendler, F., Nestler, B.: Comparative study of two phase-field models for grain growth. Comput. Mater. Sci. 46, 479–490 (2009). https://doi.org/10.1016/j.commatsci.2009.03.037

  24. Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252–271 (1972)

    Article  MATH  Google Scholar 

  26. Pino, D., Julien, B., Valdivieso, F., Drapier, S.: Solid-state sintering simulation: surface, volume and grain-boundary diffusions. In: ECCOMAS 2012 - European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers, September 2012

    Google Scholar 

  27. Poetschke, J., Richter, V., Gestrich, T., Michaelis, A.: Grain growth during sintering of tungsten carbide ceramics. Int. J. Refract. Metals Hard Mater. 43, 309–316 (2014)

    Google Scholar 

  28. Prokhorov, D., Lisitsa, V., Khachkova, T., Bazaikin, Y., Yang, Y.: Topology-based characterization of chemically-induced pore space changes using reduction of 3d digital images. J. Comput. Sci. 58, 101550 (2022)

    Google Scholar 

  29. Rahaman, M.N.: Sintering of Ceramics, 1 ed. CRC Press, Boca Raton (2007)

    Google Scholar 

  30. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19, 439–456 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sotiropoulos, F., Yang, X.: Immersed boundary methods for simulating fluid-structure interaction. Prog. Aerosp. Sci. 65, 1–21 (2014)

    Article  Google Scholar 

  32. Taha, A.A., Hanbury, A.: An efficient algorithm for calculating the exact hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 37(11) (2015). https://doi.org/10.1109/TPAMI.2015.2408351

  33. Tanaka, H.: Sintering of silicon carbide and theory of sintering. J. Ceramic Soc. Jpn. 110(1286), 877–883 (2002). https://doi.org/10.2109/jcersj.110.877

  34. Tseng, Y.H., Ferziger, J.H.: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192(2), 593–623 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Y.U.: Computer modeling and simulation of solid-state sintering: a phase field approach. Acta Materialia 54(4), 953–961 (2006)

    Google Scholar 

  36. Zhang, J., Yue, P.: A level-set method for moving contact lines with contact angle hysteresis. J. Comput. Phys. 418, 109636 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, R.J., Chen, Z.W., Fang, W., Qu, X.: Thermodynamic consistent phase field model for sintering process with multiphase powders. Trans. Nonferrous Metals Soc. China 24, 783–789 (2014). https://doi.org/10.1016/S1003-6326(14)63126-5

Download references

Acknowledgements

Dmitry Prokhorov implemented the pahse-field method and developed algorithms for computing the characteristics of the grains packing digital representation under the support of the basic research program of the Russian Academy of Sciences contract no. FWZZ-2022-0022. Yaroslav Bazaikin analyzed the results under the institutional support of the Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Czech Republic. Vadim Lisitsa performed a numerical experiments using “Polytechnic RSC Tornado” (SPBSTU, Russia) with the support of the Russian Science Foundation Grant No. 21-71-20003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Prokhorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prokhorov, D., Bazaikin, Y., Lisitsa, V. (2023). Verification of the Domains Tracking Algorithm for Solving the System of Allen-Cahn and Cahn-Hilliard Equations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14104. Springer, Cham. https://doi.org/10.1007/978-3-031-37105-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37105-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37104-2

  • Online ISBN: 978-3-031-37105-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics