Abstract
This paper analyzes the application of a population-based algorithm and its improvement in solving an optimal power flow problem. Simulations were performed on a 14-bus IEEE network modified to include renewable energy sources-based power plants: a wind park and two photovoltaic solar parks. In this scenario, the high penetration of intermittent energy sources in the grid makes it necessary to curtail active power during peak generation to maintain the balance between load and generation. However, European energy market regulations limit the annual curtailment of RES generators and penalize discriminatory curtailment actions between generators. This work exploits the minimization of transmission active loss while respecting its security constraints. Additionally, constraints were introduced in the optimal power flow problem to mitigate active power curtailment of the renewable source generators and to secure a non-discriminatory characteristic in curtailment decisions. The non-convex nature of the problem, intensified by the introduction of non-linear constraints, suggests the exploitation of heuristic algorithms to locate the optimal global solution. The obtained results demonstrate that a hybrid GA algorithm can improve convergence speed, and it is useful in determining the problem solution in cases where deterministic algorithms are unable to converge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Xiong, K., Cao, D., Zhang, G., Chen, Z., Hu, W.: Coordinated volt/VAR control for photovoltaic inverters: a soft actor-critic enhanced droop control approach. Int. J. Electr. Power Energy Syst. 149, 109019 (2023). https://doi.org/10.1016/j.ijepes.2023.109019
Jiao, W., Wu, Q., Huang, S., Chen, J., Li, C., Zhou, B.: DMPC based distributed voltage control for unbalanced distribution networks with single-/three-phase DGs. Int. J. Electr. Power Energy Syst. 150, 109068 (2023). https://doi.org/10.1016/j.ijepes.2023.109068
Grisales-Noreña, L.F., Rosales-Muñoz, A.A., Cortés-Caicedo, B., Montoya, O.D., Andrade, F.: Optimal operation of PV sources in DC grids for improving technical, economical, and environmental conditions by using Vortex Search algorithm and a matrix hourly power flow. Mathematics 11(1), 93 (2022). https://doi.org/10.3390/math11010093
Reddy, S.S., Momoh, J.A.: Minimum emissions optimal power flow in wind-thermal power system using opposition based bacterial dynamics algorithm. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5, Boston, MA, USA (2016). https://doi.org/10.1109/PESGM.2016.7741635
Bhumkittipich, K., Phuangpornpitak, W.: Optimal placement and sizing of distributed generation for power loss reduction using particle swarm optimization. Energy Proc. 34, 307–317 (2013). https://doi.org/10.1016/j.egypro.2013.06.759
Carpentier, J.: Optimal power flows. Int. J. Electr. Power Energy Syst. 1(1), 3–15 (1979). https://doi.org/10.1016/0142-0615(79)90026-7
Tong, X., Zhang, Y., Wu, F.F.: A decoupled semismooth newton method for optimal power flow. In: 2006 IEEE Power Engineering Society General Meeting, pp. 6–pp. Montreal, QC, Canada (2006). https://doi.org/10.1109/PES.2006.1709065
Ilyas, M., Alquthami, T., Awais, M., Milyani, A., Rasheed, M.: (DA-DOPF): a day ahead dynamic optimal power flow with renewable energy integration in smart grid. Front. Energy Res. 9, 696837 (2021). https://doi.org/10.3389/fenrg.2021.696837
Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I. Energy Syst 3, 221–258 (2012). https://doi.org/10.1007/s12667-012-0056-y
Papazoglou, G., Biskas, P.: Review and comparison of genetic algorithm and particle swarm optimization in the optimal power flow problem. Energies 16(3), 1152 (2023). https://doi.org/10.3390/en16031152
Gaing, Z.-L., Chang, R.-F: Security-constrained optimal power flow by mixed-integer genetic algorithm with arithmetic operators. In: 2006 IEEE Power Engineering Society General Meeting, pp. 8-pp. Montreal, QC, Canada (2006) https://doi.org/10.1109/PES.2006.1709334
Yan, W., Liu, F., Chung, C.Y., Wong, K.P.: A hybrid genetic algorithm-interior point method for optimal reactive power flow. IEEE Trans. Power Syst. 21(3), 1163–1169 (2006). https://doi.org/10.1109/TPWRS.2006.879262
Mo, N., Zou, Z.Y., Chan, K.W., Pong, T.Y.G.: Transient stability constrained optimal power flow using particle swarm optimisation. IET Gener. Trans. Distrib. 1(3), 476–483 (2007)
Ongsakul, W., Bhasaputra, P.: Optimal power flow with FACTS devices by hybrid TS/SA approach. Int. J. Electr. Power Energy Syst. 24(10), 851–857 (2002). https://doi.org/10.1016/S0142-0615(02)00006-6
Varadarajan, M., Swarup, K.S.: Solving multi-objective optimal power flow using differential evolution. IET Gener. Trans. Distrib.. 2(5), 720 (2008). https://doi.org/10.1049/iet-gtd:20070457
Sinha, P., Paul, K., Deb, S., Sachan, S.: Comprehensive review based on the impact of integrating electric vehicle and renewable energy sources to the grid. Energies 16(6), 2924 (2023). https://doi.org/10.3390/en16062924
Meier, F., Töbermann, C., Braun, M.: Retrospective optimal power flow for low discriminating active power curtailment. In: 2019 IEEE Milan PowerTech, pp. 1–6, Milan, Italy (2019). https://doi.org/10.1109/PTC.2019.8810818
Masaud, T.M., Patil, S., Hagan, K., Sen, P.K.: Probabilistic quantification of wind power curtailment based on intra-seasonal wind forecasting approach. In: IEEE Power & Energy Society General Meeting, pp. 1–5, Chicago, IL, USA (2017). https://doi.org/10.1109/PESGM.2017.8274195
Wiest, P., Rudion, K., Probst, A.: Optimization of power feed-in curtailment from RES and its consideration within grid planning. In: IEEE Manchester PowerTech, pp. 1–6, Manchester, UK (2017). https://doi.org/10.1109/PTC.2017.7980801
Bird, L., et al.: Wind and solar energy curtailment: a review of international experience. Renew. Sustain. Energy Rev. 65, 577–86 (2016). https://doi.org/10.1016/j.rser.2016.06.082
European Commission, “Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the internal market for electricity(02019R0943 - EN - 23.06.2022)”, ed: Official Journal of the European Union, p. 86
Illinois Center for a Smarter Electric Grid. http://publish.illinois.edu/smartergrid/. Accessed 30 Mar 2023
Angizeh, F., Ghofrani, A., Jafari, A.: Dataset on hourly load profiles for a set of 24 facilities from industrial, commercial, and residential end-use sectors. Mendeley Data 1, (2020). https://doi.org/10.17632/rfnp2d3kjp.1
Open-Meteo. Free Weather API. https://open-meteo.com/. Accessed 28 Oct 2022
Yang, H., Lu, L., Zhou, W.: A novel optimization sizing model for hybrid solar-wind power generation system. Sol. Energy 81(1), 76–84 (2007). https://doi.org/10.1016/j.solener.2006.06.010
Bouchekara, H.R.E.H.: Optimal power flow using black-hole-based optimization approach. Appl. Soft Comput. 24, 879–888 (2014). https://doi.org/10.1016/j.asoc.2014.08.056
Torres, G.L., Quintana, V.H.: An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Trans. Power Syst. 13(4), 1211–1218 (1998)
Abido, M.A.: Environmental/economic power dispatch using multi-objective evolutionary algorithms. IEEE Trans. Power Syst. 18(4), 1529–1537 (2003). https://doi.org/10.1109/TPWRS.2003.818693
de Sousa, V.A., Baptista, E.C., da Costa, G.R.M.: Optimal reactive power flow via the modified barrier Lagrangian function approach. Electr. Power Syst. Res. 84(1), 159–164 (2012). https://doi.org/10.1016/j.epsr.2011.11.001
Renewable Energy Production in Portugal on 2023. APREN. (n.d.). https://www.apren.pt/en/renewable-energies/production. Accessed 3 May 2023
Na, S., Anitescu, M., Kolar, M.: Inequality constrained stochastic nonlinear optimization via active-set sequential quadratic programming. Math. Prog. (2023). https://doi.org/10.1007/s10107-023-01935-7
Hajela, P.: Genetic search - an approach to the nonconvex optimization problem. AIAA J. 28(7), 1205–1210 (1990). https://doi.org/10.2514/3.25195
Alan, H.: Genetic algorithm and programming. In: An Introduction to Computational Physics, pp. 323–346 (2006). https://doi.org/10.1017/cbo9780511800870.013
Amoura, Y., Pereira, A.I., Lima, J.: Optimization methods for energy management in a microgrid system considering wind uncertainty data. In: Kumar, S., Purohit, S.D., Hiranwal, S., Prasad, M. (eds.) Proceedings of International Conference on Communication and Computational Technologies. AIS, pp. 117–141. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-3246-4_10
Amoura, Y., Ferreira, Â.P., Lima, J., Pereira, A.I.: Optimal sizing of a hybrid energy system based on renewable energy using evolutionary optimization algorithms. In: Pereira, A.I., et al. (eds.) OL2A 2021. CCIS, vol. 1488, pp. 153–168. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91885-9_12
Acknowledgments
The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020), SusTEC (LA/P/0007/2021). This work has been supported by NORTE-01-0247-FEDER-072615 EPO - Enline Power Optimization - The supra-grid optimization software.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pedroso, A., Amoura, Y., Pereira, A.I., Ferreira, Â. (2023). A Hybrid Genetic Algorithm for Optimal Active Power Curtailment Considering Renewable Energy Generation. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14105. Springer, Cham. https://doi.org/10.1007/978-3-031-37108-0_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-37108-0_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37107-3
Online ISBN: 978-3-031-37108-0
eBook Packages: Computer ScienceComputer Science (R0)