Skip to main content

A Hybrid Genetic Algorithm for Optimal Active Power Curtailment Considering Renewable Energy Generation

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

This paper analyzes the application of a population-based algorithm and its improvement in solving an optimal power flow problem. Simulations were performed on a 14-bus IEEE network modified to include renewable energy sources-based power plants: a wind park and two photovoltaic solar parks. In this scenario, the high penetration of intermittent energy sources in the grid makes it necessary to curtail active power during peak generation to maintain the balance between load and generation. However, European energy market regulations limit the annual curtailment of RES generators and penalize discriminatory curtailment actions between generators. This work exploits the minimization of transmission active loss while respecting its security constraints. Additionally, constraints were introduced in the optimal power flow problem to mitigate active power curtailment of the renewable source generators and to secure a non-discriminatory characteristic in curtailment decisions. The non-convex nature of the problem, intensified by the introduction of non-linear constraints, suggests the exploitation of heuristic algorithms to locate the optimal global solution. The obtained results demonstrate that a hybrid GA algorithm can improve convergence speed, and it is useful in determining the problem solution in cases where deterministic algorithms are unable to converge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiong, K., Cao, D., Zhang, G., Chen, Z., Hu, W.: Coordinated volt/VAR control for photovoltaic inverters: a soft actor-critic enhanced droop control approach. Int. J. Electr. Power Energy Syst. 149, 109019 (2023). https://doi.org/10.1016/j.ijepes.2023.109019

    Article  Google Scholar 

  2. Jiao, W., Wu, Q., Huang, S., Chen, J., Li, C., Zhou, B.: DMPC based distributed voltage control for unbalanced distribution networks with single-/three-phase DGs. Int. J. Electr. Power Energy Syst. 150, 109068 (2023). https://doi.org/10.1016/j.ijepes.2023.109068

    Article  Google Scholar 

  3. Grisales-Noreña, L.F., Rosales-Muñoz, A.A., Cortés-Caicedo, B., Montoya, O.D., Andrade, F.: Optimal operation of PV sources in DC grids for improving technical, economical, and environmental conditions by using Vortex Search algorithm and a matrix hourly power flow. Mathematics 11(1), 93 (2022). https://doi.org/10.3390/math11010093

    Article  Google Scholar 

  4. Reddy, S.S., Momoh, J.A.: Minimum emissions optimal power flow in wind-thermal power system using opposition based bacterial dynamics algorithm. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5, Boston, MA, USA (2016). https://doi.org/10.1109/PESGM.2016.7741635

  5. Bhumkittipich, K., Phuangpornpitak, W.: Optimal placement and sizing of distributed generation for power loss reduction using particle swarm optimization. Energy Proc. 34, 307–317 (2013). https://doi.org/10.1016/j.egypro.2013.06.759

    Article  Google Scholar 

  6. Carpentier, J.: Optimal power flows. Int. J. Electr. Power Energy Syst. 1(1), 3–15 (1979). https://doi.org/10.1016/0142-0615(79)90026-7

    Article  Google Scholar 

  7. Tong, X., Zhang, Y., Wu, F.F.: A decoupled semismooth newton method for optimal power flow. In: 2006 IEEE Power Engineering Society General Meeting, pp. 6–pp. Montreal, QC, Canada (2006). https://doi.org/10.1109/PES.2006.1709065

  8. Ilyas, M., Alquthami, T., Awais, M., Milyani, A., Rasheed, M.: (DA-DOPF): a day ahead dynamic optimal power flow with renewable energy integration in smart grid. Front. Energy Res. 9, 696837 (2021). https://doi.org/10.3389/fenrg.2021.696837

    Article  Google Scholar 

  9. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I. Energy Syst 3, 221–258 (2012). https://doi.org/10.1007/s12667-012-0056-y

    Article  Google Scholar 

  10. Papazoglou, G., Biskas, P.: Review and comparison of genetic algorithm and particle swarm optimization in the optimal power flow problem. Energies 16(3), 1152 (2023). https://doi.org/10.3390/en16031152

    Article  Google Scholar 

  11. Gaing, Z.-L., Chang, R.-F: Security-constrained optimal power flow by mixed-integer genetic algorithm with arithmetic operators. In: 2006 IEEE Power Engineering Society General Meeting, pp. 8-pp. Montreal, QC, Canada (2006) https://doi.org/10.1109/PES.2006.1709334

  12. Yan, W., Liu, F., Chung, C.Y., Wong, K.P.: A hybrid genetic algorithm-interior point method for optimal reactive power flow. IEEE Trans. Power Syst. 21(3), 1163–1169 (2006). https://doi.org/10.1109/TPWRS.2006.879262

    Article  Google Scholar 

  13. Mo, N., Zou, Z.Y., Chan, K.W., Pong, T.Y.G.: Transient stability constrained optimal power flow using particle swarm optimisation. IET Gener. Trans. Distrib. 1(3), 476–483 (2007)

    Article  Google Scholar 

  14. Ongsakul, W., Bhasaputra, P.: Optimal power flow with FACTS devices by hybrid TS/SA approach. Int. J. Electr. Power Energy Syst. 24(10), 851–857 (2002). https://doi.org/10.1016/S0142-0615(02)00006-6

    Article  Google Scholar 

  15. Varadarajan, M., Swarup, K.S.: Solving multi-objective optimal power flow using differential evolution. IET Gener. Trans. Distrib.. 2(5), 720 (2008). https://doi.org/10.1049/iet-gtd:20070457

    Article  Google Scholar 

  16. Sinha, P., Paul, K., Deb, S., Sachan, S.: Comprehensive review based on the impact of integrating electric vehicle and renewable energy sources to the grid. Energies 16(6), 2924 (2023). https://doi.org/10.3390/en16062924

    Article  Google Scholar 

  17. Meier, F., Töbermann, C., Braun, M.: Retrospective optimal power flow for low discriminating active power curtailment. In: 2019 IEEE Milan PowerTech, pp. 1–6, Milan, Italy (2019). https://doi.org/10.1109/PTC.2019.8810818

  18. Masaud, T.M., Patil, S., Hagan, K., Sen, P.K.: Probabilistic quantification of wind power curtailment based on intra-seasonal wind forecasting approach. In: IEEE Power & Energy Society General Meeting, pp. 1–5, Chicago, IL, USA (2017). https://doi.org/10.1109/PESGM.2017.8274195

  19. Wiest, P., Rudion, K., Probst, A.: Optimization of power feed-in curtailment from RES and its consideration within grid planning. In: IEEE Manchester PowerTech, pp. 1–6, Manchester, UK (2017). https://doi.org/10.1109/PTC.2017.7980801

  20. Bird, L., et al.: Wind and solar energy curtailment: a review of international experience. Renew. Sustain. Energy Rev. 65, 577–86 (2016). https://doi.org/10.1016/j.rser.2016.06.082

    Article  Google Scholar 

  21. European Commission, “Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the internal market for electricity(02019R0943 - EN - 23.06.2022)”, ed: Official Journal of the European Union, p. 86

    Google Scholar 

  22. Illinois Center for a Smarter Electric Grid. http://publish.illinois.edu/smartergrid/. Accessed 30 Mar 2023

  23. Angizeh, F., Ghofrani, A., Jafari, A.: Dataset on hourly load profiles for a set of 24 facilities from industrial, commercial, and residential end-use sectors. Mendeley Data 1, (2020). https://doi.org/10.17632/rfnp2d3kjp.1

  24. Open-Meteo. Free Weather API. https://open-meteo.com/. Accessed 28 Oct 2022

  25. Yang, H., Lu, L., Zhou, W.: A novel optimization sizing model for hybrid solar-wind power generation system. Sol. Energy 81(1), 76–84 (2007). https://doi.org/10.1016/j.solener.2006.06.010

    Article  Google Scholar 

  26. Bouchekara, H.R.E.H.: Optimal power flow using black-hole-based optimization approach. Appl. Soft Comput. 24, 879–888 (2014). https://doi.org/10.1016/j.asoc.2014.08.056

    Article  Google Scholar 

  27. Torres, G.L., Quintana, V.H.: An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates. IEEE Trans. Power Syst. 13(4), 1211–1218 (1998)

    Article  Google Scholar 

  28. Abido, M.A.: Environmental/economic power dispatch using multi-objective evolutionary algorithms. IEEE Trans. Power Syst. 18(4), 1529–1537 (2003). https://doi.org/10.1109/TPWRS.2003.818693

    Article  Google Scholar 

  29. de Sousa, V.A., Baptista, E.C., da Costa, G.R.M.: Optimal reactive power flow via the modified barrier Lagrangian function approach. Electr. Power Syst. Res. 84(1), 159–164 (2012). https://doi.org/10.1016/j.epsr.2011.11.001

    Article  Google Scholar 

  30. Renewable Energy Production in Portugal on 2023. APREN. (n.d.). https://www.apren.pt/en/renewable-energies/production. Accessed 3 May 2023

  31. Na, S., Anitescu, M., Kolar, M.: Inequality constrained stochastic nonlinear optimization via active-set sequential quadratic programming. Math. Prog. (2023). https://doi.org/10.1007/s10107-023-01935-7

  32. Hajela, P.: Genetic search - an approach to the nonconvex optimization problem. AIAA J. 28(7), 1205–1210 (1990). https://doi.org/10.2514/3.25195

    Article  Google Scholar 

  33. Alan, H.: Genetic algorithm and programming. In: An Introduction to Computational Physics, pp. 323–346 (2006). https://doi.org/10.1017/cbo9780511800870.013

  34. Amoura, Y., Pereira, A.I., Lima, J.: Optimization methods for energy management in a microgrid system considering wind uncertainty data. In: Kumar, S., Purohit, S.D., Hiranwal, S., Prasad, M. (eds.) Proceedings of International Conference on Communication and Computational Technologies. AIS, pp. 117–141. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-3246-4_10

    Chapter  Google Scholar 

  35. Amoura, Y., Ferreira, Â.P., Lima, J., Pereira, A.I.: Optimal sizing of a hybrid energy system based on renewable energy using evolutionary optimization algorithms. In: Pereira, A.I., et al. (eds.) OL2A 2021. CCIS, vol. 1488, pp. 153–168. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91885-9_12

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020), SusTEC (LA/P/0007/2021). This work has been supported by NORTE-01-0247-FEDER-072615 EPO - Enline Power Optimization - The supra-grid optimization software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ângela Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pedroso, A., Amoura, Y., Pereira, A.I., Ferreira, Â. (2023). A Hybrid Genetic Algorithm for Optimal Active Power Curtailment Considering Renewable Energy Generation. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14105. Springer, Cham. https://doi.org/10.1007/978-3-031-37108-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37108-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37107-3

  • Online ISBN: 978-3-031-37108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics