Skip to main content

Radial Basis Function and Bayesian Methods for the Hyperparameter Optimization of Classification Random Forests

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14105))

Included in the following conference series:

  • 397 Accesses

Abstract

The hyperparameter optimization of a random forest (RF) is a discrete black-box optimization problem that aims to find the settings of the hyperparameters that optimize an overall out-of-bag (OOB) performance measure of the RF. This problem is computationally expensive for high-dimensional data involving many predictors and a large number of data points. This paper explores the use of surrogate-based approaches, particularly radial basis function (RBF) methods and Bayesian optimization techniques, to optimize the hyperparameters of a classification RF. The surrogates approximate the functional relationship between the hyperparameters and the overall OOB performance of the RF, and they are used to guide the search for a global optimum for the hyperparameter optimization problem. While Bayesian optimization methods have been used to tune the hyperparameters of a classification RF, RBF methods have rarely been used for this task, if at all. We compare the performance of the B-CONDOR-RBF algorithm and a Bayesian optimization method with global and local discrete random search methods to tune the discrete hyperparameters of an RF on 10 classification data sets that involve up to 753 predictor variables and up to 19K data points. The global variant of B-CONDOR-RBF obtained better overall OOB prediction error than the discrete random search methods and two Bayesian optimization algorithms given a limited budget of only 100 function evaluations. Furthermore, a local variant of B-CONDOR-RBF outperformed the random search methods and achieved comparable performance with the Bayesian optimization algorithms on the same problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Archetti, F., Candelieri, A.: Bayesian Optimization and Data Science. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24494-1

    Book  MATH  Google Scholar 

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2019). http://archive.ics.uci.edu/ml

  5. Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.: Efficient hyperparameter optimization for deep learning algorithms using deterministic RBF surrogates. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1 (2017)

    Google Scholar 

  6. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Joy, T.T., Rana, S., Gupta, S., Venkatesh, S.: Hyperparameter tuning for big data using Bayesian optimisation. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2574–2579 (2016). https://doi.org/10.1109/ICPR.2016.7900023

  8. Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6849-3

    Book  MATH  Google Scholar 

  9. Kuhn, M., Johnson, K.: AppliedPredictiveModeling: Functions and Data Sets for ‘Applied Predictive Modeling’. R package version 1.1-7 (2018). https://CRAN.R-project.org/package=AppliedPredictiveModeling

  10. Picheny, V., Ginsbourger, D., Roustant, O.: DiceOptim: Kriging-Based Optimization for Computer Experiments. R package version 2.1.1 (2021). https://CRAN.R-project.org/package=DiceOptim

  11. Powell, M.J.D.: The theory of radial basis function approximation in 1990. In: Light, W. (ed.) Advances in Numerical Analysis, Volume 2: Wavelets, Subdivision Algorithms and Radial Basis Functions, pp. 105–210. Oxford University Press, Oxford (1992)

    Google Scholar 

  12. Probst, P., Wright, M.N., Boulesteix, A.-L.: Hyperparameters and tuning strategies for random forest. WIREs Data Min. Knowl. Discov. 9(3), e1301 (2019)

    Google Scholar 

  13. R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021). https://www.R-project.org/

  14. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press (2006)

    Google Scholar 

  15. Regis, R.G.: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions. Comput. Oper. Res. 38(5), 837–853 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Regis, R.G.: Hyperparameter tuning of random forests using radial basis function models. In: Nicosia, G., et al. (eds.) LOD 2022. LNCS, vol. 13810, pp. 309–324. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25599-1_23

    Chapter  Google Scholar 

  17. Roustant, O., Ginsbourger, D., Deville, Y.: DiceKriging, DiceOptim: two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. J. Stat. Softw. 51(1), 1–55 (2012)

    Article  Google Scholar 

  18. RStudio Team: RStudio: Integrated Development for R. RStudio, PBC, Boston, MA (2020). http://www.rstudio.com/

  19. Schonlau, M.: Computer experiments and global optimization. Ph.D. thesis, University of Waterloo, Canada (1997)

    Google Scholar 

  20. Turner, R., et al.: Bayesian optimization is superior to random search for machine learning hyperparameter tuning: analysis of the black-box optimization challenge 2020. In: Proceedings of the NeurIPS 2020 Competition and Demonstration Track, in Proceedings of Machine Learning Research, vol. 133, pp. 3–26 (2021)

    Google Scholar 

  21. Vu, K.K., D’Ambrosio, C., Hamadi, Y., Liberti, L.: Surrogate-based methods for black-box optimization. Int. Trans. Oper. Res. 24, 393–424 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wright, M.N., Ziegler, A.: Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77(1), 1–17 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rommel G. Regis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Regis, R.G. (2023). Radial Basis Function and Bayesian Methods for the Hyperparameter Optimization of Classification Random Forests. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14105. Springer, Cham. https://doi.org/10.1007/978-3-031-37108-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37108-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37107-3

  • Online ISBN: 978-3-031-37108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics