Skip to main content

Computational Investigation of the N(\(^2\)D)+ C\(_2\)H\(_4\) and N(\(^2\)D)+ CH\(_2\)CHCN Reactions: Benchmark Analysis and Implications for Titan’s Atmosphere

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

In the present contribution we report a theoretical investigation of the reactions of atomic nitrogen, in its first electronically excited \(^2\)D state, with two different molecules: ethylene (C\(_2\)H\(_4\)) and acrylonitrile (CH\(_2\)CHCN), which appear to be important processes for the chemistry of Titan’s atmosphere. The main reaction channels have been investigated through ab initio electronic structure calculations. Accurate quantum chemical calculations allowed the identification of the available pathways as a sequence of minimum and transition state structures, leading to the formation of different products, mainly related to H-displacement processes. Single point energy calculations have been performed at different levels of theory in order to establish a reasonable computational strategy for the analysis of astrochemically relevant gas phase neutral-neutral reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown, R.H., Lebreton, J.P., Waite, J.H.: Titan from cassini-huygens (2009)

    Google Scholar 

  2. Hörst, S.M.: Titan’s atmosphere and climate. J. Geophys. Res. Planets 122(3), 432–482 (2017)

    Article  Google Scholar 

  3. Lindal, G.F., Wood, G., Hotz, H., Sweetnam, D., Eshleman, V., Tyler, G.: The atmosphere of titan: an analysis of the voyager 1 radio occultation measurements. Icarus 53(2), 348–363 (1983)

    Article  Google Scholar 

  4. Hanel, R., et al.: Infrared observations of the saturnian system from voyager 1. Science 212(4491), 192–200 (1981)

    Article  Google Scholar 

  5. Yung, Y.L., Allen, M., Pinto, J.P.: Photochemistry of the atmosphere of titan: comparison between model and observations. Astrophys. J. Suppl. Ser. 55(3), 465–506 (1984)

    Article  Google Scholar 

  6. Lavvas, P., Coustenis, A., Vardavas, I.: Coupling photochemistry with haze formation in titan’s atmosphere, part ii: results and validation with Cassini/Huygens data. Planet. Space Sci. 56(1), 67–99 (2008)

    Article  Google Scholar 

  7. Vuitton, V., Yelle, R., Klippenstein, S., Hörst, S., Lavvas, P.: Simulating the density of organic species in the atmosphere of titan with a coupled ion-neutral photochemical model. Icarus 324, 120–197 (2019)

    Article  Google Scholar 

  8. Dutuit, O., et al.: Critical review of n, n\(^+\), n\(_2^+\), n\(^{++}\), and n\(_2^{++}\) main production processes and reactions of relevance to titan’s atmosphere. Astrophys. J. Suppl. Ser. 204(2), 20 (2013)

    Article  Google Scholar 

  9. Herron, J.T.: Evaluated chemical kinetics data for reactions of n(\(^2\)d), n\(_2\))), and n\(_2\)(* 3* u+) in the gas phase (1999)

    Google Scholar 

  10. Schofield, K.: Critically evaluated rate constants for gaseous reactions of several electronically excited species. J. Phys. Chem. Ref. Data 8(3), 723–798 (1979)

    Article  Google Scholar 

  11. Balucani, N., et al.: Cyanomethylene formation from the reaction of excited nitrogen atoms with acetylene: a crossed beam and ab initio study. J. Am. Chem. Soc. 122(18), 4443–4450 (2000)

    Article  Google Scholar 

  12. Balucani, N., et al.: Formation of nitriles and imines in the atmosphere of titan: combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms n(\(^2\)d) with ethane. Faraday Discuss. 147, 189–216 (2010)

    Article  Google Scholar 

  13. Liang, P., et al.: Combined crossed molecular beams and computational study on the n(\(^2\)d)+ HCCCN (x\(^1\)\(\sigma \)+) reaction and implications for extra-terrestrial environments. Mol. Phys. 120(1–2), e1948126 (2022)

    Article  Google Scholar 

  14. Vinatier, S., et al.: Analysis of Cassini/CIRS limb spectra of titan acquired during the nominal mission: I. hydrocarbons, nitriles and co\(_2\) vertical mixing ratio profiles. Icarus 205(2), 559–570 (2010)

    Google Scholar 

  15. Cui, J., et al.: Analysis of titan’s neutral upper atmosphere from Cassini ion neutral mass spectrometer measurements. Icarus 200(2), 581–615 (2009)

    Article  Google Scholar 

  16. Vuitton, V., Yelle, R., McEwan, M.: Ion chemistry and n-containing molecules in titan’s upper atmosphere. Icarus 191(2), 722–742 (2007)

    Article  Google Scholar 

  17. Magee, B.A., Waite, J.H., Mandt, K.E., Westlake, J., Bell, J., Gell, D.A.: INMS-derived composition of titan’s upper atmosphere: analysis methods and model comparison. Planet. Space Sci. 57(14–15), 1895–1916 (2009)

    Article  Google Scholar 

  18. Müller-Wodarg, I., Griffith, C.A., Lellouch, E., Cravens, T.E.: Titan: Interior, Surface, Atmosphere, and Space Environment, vol. 14. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  19. Palmer, M.Y., et al.: ALMA detection and astrobiological potential of vinyl cyanide on titan. Sci. Adv. 3(7), e1700022 (2017)

    Article  Google Scholar 

  20. Lai, J.Y., et al.: Mapping vinyl cyanide and other nitriles in titan’s atmosphere using alma. Astron. J. 154(5), 206 (2017)

    Article  Google Scholar 

  21. Sims, I.R., et al.: Rate constants for the reactions of CN with hydrocarbons at low and ultra-low temperatures. Chem. Phys. Lett. 211(4–5), 461–468 (1993)

    Article  Google Scholar 

  22. Balucani, N., et al.: Crossed beam reaction of cyano radicals with hydrocarbon molecules. iii. chemical dynamics of vinylcyanide (c\(_2\)h\(_3\) CN; x\(^1\)a’) formation from reaction of CN (x\(^2\)\(\sigma \)\(^+\)) with ethylene, c\(_2\)h\(_4\) (x\(^1\)a\(_g\)). J. Chem. Phys. 113(19), 8643–8655 (2000)

    Google Scholar 

  23. Balucani, N., et al.: Formation of nitriles in the interstellar medium via reactions of cyano radicals, CN (x 2\(\sigma \)+), with unsaturated hydrocarbons. Astrophys. J. 545(2), 892 (2000)

    Article  Google Scholar 

  24. Balucani, N., Asvany, O., Osamura, Y., Huang, L., Lee, Y., Kaiser, R.: Laboratory investigation on the formation of unsaturated nitriles in titan’s atmosphere. Planet. Space Sci. 48(5), 447–462 (2000)

    Article  Google Scholar 

  25. Leonori, F., Petrucci, R., Wang, X., Casavecchia, P., Balucani, N.: A crossed beam study of the reaction CN+C\(_2\)H\(_4\) at a high collision energy: the opening of a new reaction channel. Chem. Phys. Lett. 553, 1–5 (2012)

    Article  Google Scholar 

  26. Balucani, N., et al.: A combined crossed molecular beams and theoretical study of the reaction CN+C\(_2\)H\(_4\). Chem. Phys. 449, 34–42 (2015)

    Article  Google Scholar 

  27. Vereecken, L., De Groof, P., Peeters, J.: Temperature and pressure dependent product distribution of the addition of CN radicals to C\(_2\)H\(_4\). Phys. Chem. Chem. Phys. 5(22), 5070–5076 (2003)

    Article  Google Scholar 

  28. Gannon, K.L., Glowacki, D.R., Blitz, M.A., Hughes, K.J., Pilling, M.J., Seakins, P.W.: H atom yields from the reactions of CN radicals with c\(_2\)h\(_2\), c\(_2\)h\(_4\), c\(_3\)h\(_6\), trans-2-c\(_4\)h\(_8\), and iso-c\(_4\)h\(_8\). J. Phys. Chem. A 111(29), 6679–6692 (2007)

    Article  Google Scholar 

  29. Balucani, N., et al.: Combined crossed beam and theoretical studies of the n(\(^2\)d)+ c\(_2\)h\(_4\) reaction and implications for atmospheric models of titan. J. Phys. Chem. A 116(43), 10467–10479 (2012)

    Article  Google Scholar 

  30. Vanuzzo, G., et al.: The n(\(^{2}\)d)+ ch\(_{2}\)chcn (vinyl cyanide) reaction: a combined crossed molecular beam and theoretical study and implications for the atmosphere of titan. J. Phys. Chem. A 126(36), 6110–6123 (2022)

    Article  Google Scholar 

  31. Marchione, D., et al.: Unsaturated dinitriles formation routes in extraterrestrial environments: a combined experimental and theoretical investigation of the reaction between cyano radicals and cyanoethene (c\(_2\)h\(_3\)cn). J. Phys. Chem. A 126(22), 3569–3582 (2022)

    Article  Google Scholar 

  32. Rosi, M., et al.: Possible scenarios for sis formation in the interstellar medium: electronic structure calculations of the potential energy surfaces for the reactions of the SiH radical with atomic sulphur and S\(_2\). Chem. Phys. Lett. 695, 87–93 (2018)

    Article  Google Scholar 

  33. Mancini, L., Trinari, M., de Aragão, E.V.F., Rosi, M., Balucani, N.: The s\(^+\)(\(^4\)s)+ sih\(_2\) (\(^1\)a\(_1\)) reaction: toward the synthesis of interstellar SiS. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications – ICCSA 2022 Workshops. ICCSA 2022. LNCS, vol. 13378, pp. 233–245. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10562-3_17

  34. Becke, A.D.: A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993)

    Article  Google Scholar 

  35. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994)

    Article  Google Scholar 

  36. Dunning Jr, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989)

    Google Scholar 

  37. Woon, D.E., Dunning Jr, T.H.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98(2), 1358–1371 (1993)

    Google Scholar 

  38. Kendall, R.A., Dunning Jr, T.H., Harrison, R.J.: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96(9), 6796–6806 (1992)

    Google Scholar 

  39. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32(1), 359–401 (1981)

    Article  Google Scholar 

  40. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157(6), 479–483 (1989)

    Article  Google Scholar 

  41. Olsen, J., Jo/rgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104(20), 8007–8015 (1996)

    Google Scholar 

  42. Martin, J.M.: Ab initio total atomization energies of small molecules-towards the basis set limit. Chem. Phys. Lett. 259(5–6), 669–678 (1996)

    Article  Google Scholar 

  43. Moore, C.E.: Atomic Energy Levels. US Department of Commerce, National Bureau of Standards (1949)

    Google Scholar 

  44. Frisch, M., et al.: Gaussian 09, rev. A. 02, Gaussian. Inc., Wallingford, CT (2009)

    Google Scholar 

  45. Werner, H.J., et al.: The molpro quantum chemistry package. J. Chem. Phys. 152(14), 144107 (2020)

    Article  Google Scholar 

  46. Schaftenaar, G., Noordik, J.H.: Molden: a pre-and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Des. 14(2), 123–134 (2000)

    Article  Google Scholar 

  47. Schaftenaar, G., Vlieg, E., Vriend, G.: Molden 2.0: quantum chemistry meets proteins. J. Comput. Aided Mol. Des. 31(9), 789–800 (2017). https://doi.org/10.1007/s10822-017-0042-5

    Article  Google Scholar 

Download references

Aknowledgements

This project has received funding from the Italian MUR (PRIN 2020, “Astrochemistry beyond the second period elements”, Prot. 2020AFB3FX) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 811312 for the project ‘Astro-Chemical Origins’ (ACO). The authors thank the Herla Project - Università degli Studi di Perugia (http://www.hpc.unipg.it/hosting/vherla/vherla.html) for allocated computing time. The authors thank the Dipartimento di Ingegneria Civile ed Ambientale of the University of Perugia for allocated computing time within the project “Dipartimenti di Eccellenza 2018-2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mancini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mancini, L., de Aragão, E.V.F., Rosi, M. (2023). Computational Investigation of the N(\(^2\)D)+ C\(_2\)H\(_4\) and N(\(^2\)D)+ CH\(_2\)CHCN Reactions: Benchmark Analysis and Implications for Titan’s Atmosphere. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14105. Springer, Cham. https://doi.org/10.1007/978-3-031-37108-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37108-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37107-3

  • Online ISBN: 978-3-031-37108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics