Skip to main content

A Computational Study of the Reaction Between N(2D) and Simple Aromatic Hydrocarbons

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

In this contribution, we will present a computational study of the reactions involving N(2D) and simple aromatic hydrocarbons, like benzene or toluene. The aim is to determine the chemical reactivity of N(2D) with aromatic species after previous investigations with aliphatic molecules, in order to establish which level of calculation is necessary to get reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raghuram, S., Hutsemékers, D., Opitom, C., Jehin, E., Bhardwaj, A., Manfroid, J.: Forbidden atomic carbon, nitrogen, and oxygen emission lines in the water-poor comet C/2016 R2 (Pan-STARRS). Astron. Astrophys. 635, A108 (2020)

    Article  Google Scholar 

  2. Ferland, G.J., Henney, W.J., O’Dell, C.R., Porter, R.L., van Hoof, P.A.M., Williams, R.J.R.: Pumping up the [N i] nebular lines. Astrophys. J. 757, 79 (2012)

    Article  Google Scholar 

  3. Dopita, M.A., Mason, D.J., Robb, W.D.: Atomic nitrogen as a probe of physical conditions in the interstellar medium. Astrophys. J. 207, 102–109 (1976)

    Article  Google Scholar 

  4. Ferland, G.J., Rees, M.J.: radiative equilibrium of high-density clouds, with application to active galactic nucleus continua. Astrophys. J. 332, 141 (1988)

    Article  Google Scholar 

  5. Bautista, M.A.: Continuum fluorescence excitation of [N I] and [O I] lines in gaseous nebulae. Astrophys. J. 527, 474 (1999)

    Article  Google Scholar 

  6. Hörst, S.M.: Titan’s atmosphere and climate. J. Geophys. Res.: Planets 122, 432–482 (2017)

    Article  Google Scholar 

  7. Vuitton, V., Yelle, R.V., Anicich, V.G.: The nitrogen chemistry of Titan’s upper atmosphere revealed. Astrophys J. 647, L175–L178 (2006)

    Article  Google Scholar 

  8. Vuitton, V., Dutuit, O., Smith, M.A., Balucani, N.: Chemistry of Titan’s atmosphere. In: Mueller-Wodarg, I., Griffith, C., Lellouch, E., Cravens, T. (eds.) Titan: Surface. Atmosphere and Magnetosphere. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  9. Balucani, N.: Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem. Soc. Rev. 41, 5473–5483 (2012)

    Article  Google Scholar 

  10. Brown, R., Lebreton, J.P., Waite, J. (eds.): Titan from Cassini-Huygens. Springer, Netherlands (2010)

    Google Scholar 

  11. Lai, J.C.-Y., et al.: Mapping vinyl cyanide and other nitriles in Titan’s atmosphere using ALMA. Astron. J. 154(206), 1–10 (2017)

    Google Scholar 

  12. Vuitton, V., Yelle, R.V., Cui, J.: Formation and distribution of benzene on Titan. J. Geophys. Res. 113, E05007 (2008)

    Google Scholar 

  13. Clark, R.N., et al.: Detection and mapping of hydrocarbon deposits on Titan. J. Geophys. Res. 115, E10005 (2010)

    Article  Google Scholar 

  14. Loison, J.C., Dobrijevic, M., Hickson, K.M.: The photochemical production of aromatics in the atmosphere of Titan. Icarus 329, 55–71 (2019)

    Article  Google Scholar 

  15. Lavvas, P., et al.: Energy deposition and primary chemical products in Titan’s upper atmosphere. Icarus 213, 233–251 (2011)

    Article  Google Scholar 

  16. Dutuit, O., et al.: Critical review of N, N+, N2+, N++ and N2++ main production processes and reactions of relevance to Titan’s atmosphere. Astrophys. J. Suppl. Ser. 204, 20 (2013)

    Article  Google Scholar 

  17. Balucani, N.: Nitrogen fixation by photochemistry in the atmosphere of Titan and implications for prebiotic chemistry. In: Trigo-Rodriguez, J.M., Raulin, F., Muller, C., Nixon, C. (eds.) The Early Evolution of the Atmospheres of Terrestrial Planets. Springer Series in Astrophysics and Space Science Proceedings, vol. 35, pp. 155–164. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5191-4_12

    Chapter  Google Scholar 

  18. Balucani, N.: Elementary reactions and their role in gas-phase prebiotic chemistry. Int. J. Mol. Sci. 10, 2304–2335 (2009)

    Article  Google Scholar 

  19. Imanaka, H., Smith, M.A.: Formation of nitrogenated organic aerosols in the Titan upper atmosphere. PNAS 107, 12423–12428 (2010)

    Article  Google Scholar 

  20. Balucani, N., et al.: Dynamics of the N(2D) + D2 reaction from crossed-beam and quasiclassical trajectory studies. J. Phys. Chem. A 105, 2414–2422 (2001)

    Article  Google Scholar 

  21. Balucani, N., et al.: Experimental and theoretical differential cross sections for the N(2D) + H2 reaction. J. Phys. Chem. A 110, 817–829 (2006)

    Article  Google Scholar 

  22. Homayoon, Z., Bowman, J.M., Balucani, N., Casavecchia, P.: Quasiclassical trajectory calculations of the N(2D) + H2O reaction elucidating the formation mechanism of HNO and HON seen in molecular beam experiments. J. Phys. Chem. Lett. 5, 3508–3513 (2014)

    Article  Google Scholar 

  23. Balucani, N., Cartechini, L., Casavecchia, P., Homayoon, Z., Bowman, J.M.: A combined crossed molecular beam and quasiclassical trajectory study of the Titan-relevant N(2D) + D2O reaction. Mol. Phys. 113, 2296–2301 (2015)

    Article  Google Scholar 

  24. Israel, G., et al.: Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature 438, 796 (2005)

    Article  Google Scholar 

  25. Balucani, N., et al.: Combined crossed molecular beam and theoretical studies of the N(2D) + CH4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 113, 11138–11152 (2009)

    Article  Google Scholar 

  26. Balucani, N., et al.: Cyanomethylene formation from the reaction of excited nitrogen atoms with acetylene: a crossed beam and ab initio study. J. Am. Chem. Soc. 122, 4443–4450 (2000)

    Article  Google Scholar 

  27. Balucani, N., Cartechini, L., Alagia, M., Casavecchia, P., Volpi, G.G.: Observation of nitrogen-bearing organic molecules from reactions of nitrogen atoms with hydrocarbons: a crossed beam study of N(2D) + ethylene. J. Phys. Chem. A 104, 5655–5659 (2000)

    Article  Google Scholar 

  28. Balucani, N., et al.: Formation of nitriles and imines in the atmosphere of Titan: combined crossed-beam and theoretical studies on the reaction dynamics of excited nitrogen atoms N(2D) with ethane. Faraday Discuss. 147, 189–216 (2010)

    Article  Google Scholar 

  29. Balucani, N., et al.: Combined crossed beam and theoretical studies of the N(2D) + C2H4 reaction and implications for atmospheric models of Titan. J. Phys. Chem. A 116, 10467–10479 (2012)

    Article  Google Scholar 

  30. Vanuzzo, G., et al.: Reaction N(2D) + CH2CCH2 (Allene): an experimental and theoretical investigation and implications for the photochemical models of Titan. ACS Earth Space Chem. 6, 2305–2321 (2022)

    Article  Google Scholar 

  31. Mancini, L., et al.: The reaction N(2D) + CH3CCH (Methylacetylene): a combined crossed molecular beams and theoretical investigation and implications for the atmosphere of titan. J. Phys. Chem A 125, 8846–8859 (2021)

    Article  Google Scholar 

  32. Mancini, L., de Aragão, E.V.F., Rosi, M., Skouteris, D., Balucani, N.: A theoretical investigation of the reactions of N(2D) with small alkynes and implications for the prebiotic chemistry of titan. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12251, pp. 717–729. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58808-3_52

    Chapter  Google Scholar 

  33. Balucani, N., Pacifici, L., Skouteris, D., Caracciolo, A., Casavecchia, P., Rosi, M.: A theoretical investigation of the reaction N(2D) + C6H6 and implications for the upper atmosphere of Titan. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10961, pp. 763–772. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95165-2_53

  34. Balucani, N., et al.: A Computational Study of the Reaction N(2D) + C6H6 Leading to Pyridine and Phenylnitrene. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11621, pp. 316–324. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24302-9_23

    Chapter  Google Scholar 

  35. Balucani, N., et al.: An experimental and theoretical investigation of the N(2D) + C6H6 (benzene) reaction with implications for the photochemical models of Titan. Faraday Discuss. (2023). https://doi.org/10.1039/D3FD00057E

  36. Rosi, M., et al.: A computational study on the attack of nitrogen and oxygen atoms to toluene. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12953, pp. 620–631. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86976-2_42

    Chapter  Google Scholar 

  37. Rosi, M., et al.: A computational study on the insertion of N(2D) into a C—H or C—C bond: the reactions of N(2D) with benzene and toluene and their implications on the chemistry of titan. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12251, pp. 744–755. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58808-3_54

    Chapter  Google Scholar 

  38. Balucani, N., Skouteris, D., Ceccarelli, C., Codella, C., Falcinelli, S., Rosi, M.: A theoretical investigation of the reaction between the amidogen, NH, and the ethyl, C2H5, radicals: a possible gas-phase formation route of interstellar and planetary ethanimine. Molec. Astrophys. 13, 30–37 (2018)

    Article  Google Scholar 

  39. Sleiman, C., El Dib, G., Rosi, M., Skouteris, D., Balucani, N., Canosa, A.: Low temperature kinetics and theoretical study of the reaction CN + CH3NH2: a potential source of cyanamide and methyl cyanamide in the interstellar medium. PCCP 20, 5478–5489 (2018)

    Article  Google Scholar 

  40. Berteloite, C., et al.: Low temperature kinetics, crossed beam dynamics and theoretical studies of the reaction S(1D) + CH4 and low temperature kinetics of S(1D) + C2H2. Phys. Chem. Chem. Phys. 13, 8485–8501 (2011)

    Article  Google Scholar 

  41. Rosi, M., et al.: Possible scenarios for SiS formation in the interstellar medium: electronic structure calculations of the potential energy surdaces for the reactions of the SiH radical with atomic sulphur and S2. Chem. Phys. Lett. 695, 87–93 (2018)

    Article  Google Scholar 

  42. Troiani, A., Rosi, M., Garzoli, S., Salvitti, C., de Petris, G.: Vanadium hydroxide cluster ions in the gas phase: bond-forming reactions of doubly-charged negative ions by SO2-promoted V-O activation. Chem. Eur. J. 23, 11752–11756 (2017)

    Article  Google Scholar 

  43. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  Google Scholar 

  44. Stephens, P.J., Devlin, F.J., Chablowski, C.F., Frisch, M.J.: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994)

    Article  Google Scholar 

  45. Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980)

    Article  Google Scholar 

  46. Frisch, M.J., Pople, J.A., Binkley, J.S.: Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984)

    Article  Google Scholar 

  47. Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008)

    Article  Google Scholar 

  48. Chai, J.-D., Head-Gordon, M.: Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 128, 084106 (2008)

    Article  Google Scholar 

  49. Dunning, T.H., Jr.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    Article  Google Scholar 

  50. Gonzalez, C., Schlegel, H.B.: An improved algorithm for reaction path following. J. Chem. Phys. 90, 2154–2161 (1989)

    Article  Google Scholar 

  51. Gonzalez, C., Schlegel, H.B.: Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990)

    Article  Google Scholar 

  52. Bartlett, R.J.: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem. 32, 359–401 (1981)

    Article  Google Scholar 

  53. Raghavachari, K., Trucks, G.W., Pople, J.A., Head-Gordon, M.: Quadratic configuration interaction. A general technique for determining electron correlation energies. Chem. Phys. Lett. 157, 479–483 (1989)

    Article  Google Scholar 

  54. Olsen, J., Jorgensen, P., Koch, H., Balkova, A., Bartlett, R.J.: Full configuration–interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions. J. Chem. Phys. 104, 8007–8015 (1996)

    Article  Google Scholar 

  55. Moore, C.E.: Atomic energy levels. Natl. Bur. Stand. (U.S.) Circ. N. 467. U.S., GPO, Washington, DC (1949)

    Google Scholar 

  56. Martin, J.M.: Ab initio total atomization energies of small molecules—towards the basis set limit. Chem. Phys. Lett. 259, 669–678 (1996)

    Article  Google Scholar 

  57. Frisch, M.J., et al.: Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  58. Werner, H.-J., Knowles, P.J., Knizia, G., Manby, F.R., Schütz, M.: Molpro: a general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci. 2, 242–253 (2012)

    Article  Google Scholar 

  59. Werner, H.-J., et al.: The Molpro quantum chemistry package. J. Chem. Phys. 152, 144107 (2020)

    Article  Google Scholar 

  60. Flükiger, P., Lüthi, H.P., Portmann, S., Weber, J.: MOLEKEL 4.3, Swiss Center for Sci-entific Computing, Manno (Switzerland) (2000–2002)

    Google Scholar 

  61. Portmann, S., Lüthi, H.P.: MOLEKEL: an interactive molecular graphics tool chimia, vol. 54, pp. 766–769 (2000)

    Google Scholar 

  62. Richardson, V., et al.: Fragmentation of interstellar methanol by collisions with He.+: an experimental and computational study. PCCP 24, 22437–22452 (2022)

    Article  Google Scholar 

  63. de Aragao, E.V.F., Mancini, L., Faginas-Lago, N., Rosi, M., Skouteris, D., Pirani, F.: Semiempirical potential in kinetics calculations on the HC3N + CN reaction. Molecules 27, 2297 (2022)

    Article  Google Scholar 

  64. de Aragão, E.V.F., et al.: Coding cross sections of an electron charge transfer process. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) ICCSA 2022. LNCS, vol. 13382, pp. 319–333. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10592-0_24

    Chapter  Google Scholar 

  65. de Aragao, E.V.F., Mancini, L., Faginas-Lago, N., Rosi, M., Balucani, N., Pirani, F.: Long-range complex in the HC3N + CN potential energy surface: ab initio calculations and intermolecular potential. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12958, pp. 413–425. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87016-4_31

    Chapter  Google Scholar 

  66. Chin, C.-H., Zhu, T., Zhang, J.Z.H.: Cyclopentadienyl radical formation from the reaction of excited nitrogen atoms with benzene: a theoretical study. PCCP 23, 12408–12420 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the MUR (Italian Ministry of University and Research) for "PRIN 2017" funds, project "MAGIC DUST" (Prot. 2017PJ5XXX_002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzio Rosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosi, M. et al. (2023). A Computational Study of the Reaction Between N(2D) and Simple Aromatic Hydrocarbons. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14105. Springer, Cham. https://doi.org/10.1007/978-3-031-37108-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37108-0_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37107-3

  • Online ISBN: 978-3-031-37108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics