Skip to main content

Comparing Environmental Values and CO2 Values in Geographical Contexts

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14106))

Included in the following conference series:

  • 451 Accesses

Abstract

The earth’s surface, as is known, performs a number of functions, which guarantee the existence of flora, water, fauna, and further factors for the survival of nature. Among such functions, those generated on “the ground” and born from the balance of ecosystems stand out. In the past few years, the analysis of these functions has led to the classification of soils on the basis of the identification of a various “geographies” of “environmental values”.

The subject of the paper is the story of the evolution of a recently started research. In this research phase the attempt is the try to compare different classification of soils.

The classification refer to identify sub-areas, constructed by evaluating scales of “environment value” and their ecological functions, by evaluating the carbon dioxide (CO2) containment capacity of the same environments.

The research of this paper therefore attempts to build a link between the first qualitative, spatial, multidimensional evaluation (the geography of environmental values that reminds us of the overlay) and the second monetary one, based on the containment capacity of CO2 emission compared to the ground.

The research was conducted on the basis of this comparison/overlapping, and the paper illustrates the results obtained.

The geographic rankings produced by the overlay between the mapping of eco-nomic values (related to the cost of segregated CO2) and ecological-environmental values (in the multidimensional geographic evaluation) should lead to a geographic-economic reapproach, which can alternate with forms of cross-evaluations between the cost-benefit analysis, compared through the use of overlay mapping (which reminds us “Design by Nature” Mc Harg).

At the same time, the variety of the surface and its sub-stratum is analyzed and in the field of environmental economics studies.

The aim is to identify the differences between various natural and possibly artificial soil surfaces by attributing an economic value to the different classes.

The concept of “Geography of Environmental Values” is recalled. The geographical classification is formed by building a “mosaic” of the different surfaces, which differ on a physical, ecological level.

These differences, found between those terrestrial factors that influence the dynamics of global warming, have already been reported in research and publications that use “monetization”. The main issue to be analyzed regarding the diversity of surfaces (man-made and natural, protected and to be conserved), is an important topic in the field of geographical research aimed at constructing soil classifications.

The identification of territorial differences through the scales of environmental values of the soils themselves can lead to hierarchies which, on the one hand, refer to indicators such as the ecological footprint, or impermeability, or biomass productivity, to which necessarily added the cost of carbon segregation, for the containment of global warming. The paper highlights the intersections between the qualitative classification of soils and the environmental value of the soils themselves, expressed through monetization, in the logic of implementing methods that contribute to improving the development of cost-benefit analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antrop, M.: The language of landscape ecologists and planners: a comparative con-tent analysis of concepts used in landscape ecology. Landsc. Urban Plan. 55(3), 163–173 (2001)

    Article  Google Scholar 

  2. Arèvalo, A. et al.: Widening the evaluative space for ecosystem services: a taxonomy of plural values and valuation methods. The White Horse Press (2015)

    Google Scholar 

  3. Bastian, O., Grunewald, K., Syrbe, R.-U., Walz, U., Wende, W.: Lanscape services: the concept and its practical relevance. Landscape Ecol. 29(9), 1463–1479 (2014)

    Article  Google Scholar 

  4. Attardi, R., Cerreta, M., Sannicandro, V., Torre, C.M.: Non-compensatory composite indica­ tors for the evaluation of urban planning policy: the land-use policy efficiency index (LUPEI). Eur. J. Oper. Res. 264(2), 491–507 (2018)

    Article  MATH  Google Scholar 

  5. Berto, R., Stival, C.A., Rosato, P.: Enhancing the environmental performance of industria! settlements: an economie evaluation of extensive green roof competitiveness. Build. Environ. 127, 58–68 (2018)

    Article  Google Scholar 

  6. Morano, P., Guarini, M.R., Tajani, F., Anelli, D.: Sustainable redevelopment: the cost-revenue analysis to support the urban planning decisions. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12251, pp. 968–980. Springer, Cham (2020). 10.1007/978-3-030-58808–3_69

    Google Scholar 

  7. Morano, P., Tajani, F.: Break even analysis for the financial verification of urban regeneration projects. Appl. Mech. Mater. 438, 1830–1835 (2013)

    Article  Google Scholar 

  8. Morano, P., Tajani, F.: Saving soil and financial feasibility. A model to support public-private pattnerships in the regeneration of abandoned areas. Land Use Policy 73, 40–48 (2018)

    Article  Google Scholar 

  9. Sullivan, E., Ward, P.: Sustainable housing applications and policies for low-income self-build and housing rehabilitation. Habitat Int. 36(2), 312–323 (2012)

    Article  Google Scholar 

  10. Torre, C., Morano, P., Tajani, F.: Saving soil for sustainable land use. Sustainability. 9(3), 350 (2017). https://doi.org/10.3390/su9030350

    Article  Google Scholar 

  11. Foster, L.S., Gruntfest, I.J.: Demonstration experiments using universal indicators. J. Chem. Educ. 274–276 (1937)

    Google Scholar 

  12. Greenwood-Smith, S.L.: The use of rapid environmental assessment techniques to monitor the health of Australian rivers. Water Sci. Technol. 45, 155–160 (2002)

    Article  Google Scholar 

  13. VV.AA.: Interpretation Manual of European Union Habitats. European Comrnission - DG Environment Nature Env B3 (2013)

    Google Scholar 

  14. Solarin, S.A.: Convergence in CO 2 emissions, carbon footprint and ecologica! footprint: evidence from OECD countries. Environ. Sci. Pollut. Res. 26, 6167–6181 (2019)

    Article  Google Scholar 

  15. Perchinunno, P., Rotondo, F., Torre, C.M.: The evidence of links between landscape and economy in rural park. Int. J. Agricult. Environ. Inf. Syst. 3(2), 72–85 (2012)

    Article  Google Scholar 

  16. Pilogallo, A., et al.: Ecosystem services’ based impact assessment for low carbon transition processes. TeMA-J. Land Use Mobil. Environ. 12(2), 127–138 (2019)

    Google Scholar 

  17. Mazzariello, A., Pilogallo, A., Scorza, F., Murgante, B., Las Casas, G.: Carbon stock as an indicator for the estimation of anthropic pressure on territorial components. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 697–711. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_53

    Chapter  Google Scholar 

  18. Attardi, R., Cerreta, M., Sannicandro, S., Torre, C.M.: The multidimensional assessment of land take and soil sealing. Lect. Notes Comput. Sci. 9157, 301–316 (2015)

    Article  Google Scholar 

  19. Castella, J.C., et al.: Effects of landscape segregation on livelihood vulnerability: moving from extensive shifting cultivation to rotational agriculture and natural forests in Northem Laos. Hum. Eco!. 41, 63–76 (2013)

    Google Scholar 

  20. Feld, C.K., Sousa, J.P., Martins da Silva, P., Dawson, T.P.: Indicators for biodiversity and ecosystem services: towards an improved framework for ecosystems assessment. Biodivers. Conserv. 19(10), 2895–2919 (2010)

    Google Scholar 

  21. Motavalli, P., Nelson, K., Udawatta, R., Shibu, J., Sougata, B.: Global achievements in sustainable land management. Int. Soil Water Conserv. Res. 1, 1–10 (2013)

    Article  Google Scholar 

  22. Pontius, R.G.J., Shusas, E., McEachern, M.: Detecting important categorica! land changes while accounting for persistence. Agr. Ecosyst. Environ. 101, 251–268 (2004)

    Article  Google Scholar 

  23. Vauhkonen, J., Packalen, T.: Shifting from even-aged management to less intensive forestry in varying proportions of forest land in Finland: impacts on carbon storage, harvest removals, and harvesting costs. Eur. J. Forest Res. 138(2), 219–238 (2019). https://doi.org/10.1007/slO342-019-01163-91479

    Article  Google Scholar 

  24. Maciocco, G.: Elementi di metodo per la costruzione di una geografia di valori ambientali. Metodi di valutazione nella pianificazione urbana e territoriale. teoria e casi di stuio, Franco Angeli (1989)

    Google Scholar 

  25. Roy, B.: Classement et choix en présence de points de vue multiples (la méthode ELECTRE), in La Revue d’Informatique et de Recherche Opérationelle (RIRO) (8), 57–75 (1968)

    Google Scholar 

  26. Cerreta, M., De Toro, P.: Integrated Spatial Assessment (ISA): a multi-methodological approach for planning choices. In: Burian, J. (ed.) Advances in Spatial Planning, pp. 77–108. IntechOpen, Rijeka (2012)

    Google Scholar 

  27. Chan, K.M.A., Satterfield, T., Goldstein, J.: Rethinking ecosystem services to better address and navigate cultural values. Ecol. Econ. 74, 8–18 (2012)

    Article  Google Scholar 

  28. Coccossis, H., Nijkamp, P.: Planning for our cultural heritage. Aldershot, Avebury (1995)

    Google Scholar 

  29. Costanza, R., Folke, C.: Valuing Ecosystem Services with Efficiency, Fairness and Sustainability as Goals. Nature’s Services: Societal Dependence on Natural Ecosystems (1997)

    Google Scholar 

  30. Mc Harg, J.: Design with Nature. Wiley, Hoboken

    Google Scholar 

  31. Daily, G.C., et al.: Ecosystem services in decision making: time to de-liver. Ecol. Environ. 7(1), 21–28 (2009)

    Article  Google Scholar 

  32. Millennium Ecosystem Assessment (MEA). Ecosystems and human well-being: synthesis, Island, Washington, DC (2005)

    Google Scholar 

  33. Ostrom, E.: A general framework for analyzing sustainability of social-ecological systems. Science 325(5939), 419–422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sauer, C.O.: The Morphology of Landscape. Univ. Calif. Publ. Geogr. 2(2), 19–54 (1925)

    Google Scholar 

  35. Wu, J.: Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landscape Ecol. 28(6), 999–1023 (2013)

    Article  Google Scholar 

  36. AAVV - United Nation Framework Convention on Climate Change (1992)

    Google Scholar 

  37. AAVV - Kyoto Protocol to the United Nations Framework Convention on Climate Change (1997)

    Google Scholar 

  38. FCCC/CP/ 1997/7 Add. 1, decision 1/CP. 3, Annex 7

    Google Scholar 

  39. Accademia Nazionale di Agricoltura - Arboricoltura da legno in collina e in montagna (1992)

    Google Scholar 

  40. Arrouays, D., et al.: Stocks de carbone dans les sols de France : quelles estimations? C.R. Acad. Agric. Fr., 85(6) (1999)

    Google Scholar 

  41. Binkley, C.S., et al.: Carbon sink by the forest sector options and needs for implementation. Forest Policy Econ. 4(1), 65–77 (2002)

    Google Scholar 

  42. Brown, S., Sathaye, J., Cannel, M., Kauppi, P.E.: Mitigation of carbon emissions to the atmosphere by forest management. Commonwealth For. Revue 75(1), 80–91 (1996)

    Google Scholar 

  43. Cattoi, S., Ciccarese, L., Pettenella, D., Zanolini, Z.: Gli investimenti nel settore forestale in attuazione del protocollo di Kyoto: una possibilità di valorizzazione economica dei boschi italiani? Monti e Boschi 5, 12-17 (2002)

    Google Scholar 

  44. Ciccarese, L., Gaudioso, D., Pettenella, D., Quarantino, R.: Land-use change and forestry in Italy: data availability for budgeting carbon cycle and possible developments (1998)

    Google Scholar 

  45. Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C., Wisniewski, J.: Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994)

    Article  Google Scholar 

  46. Eswaran, H., van den Berg, E., Reich, P.: Organic soil of the world. Soil Sci. Soc. Am. 57, 192–194 (1993)

    Article  Google Scholar 

  47. Frühwald, A., Solberg, B. (eds.): Life-cycle analysis - a challenge for forestry and forest industry. European Forestry Institute, Proceedings (8) (1995)

    Google Scholar 

  48. Harrison, A.F., Harkness, D.D., Rowland, A.P., Garnett, J.S., Bacon, P.J.: Annual carbon and nitrogen fluxes in soils along the European forest transect, determined using 14C-Bomb. In: Schultze E.D. (ed.) Carbon and nitrogen cycling in European forest ecosystems, pp. 236–249. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-57219-7_11

  49. IPCC - Intergovernamental Panel on Climate Change - Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Hadley Centre, London (1997)

    Google Scholar 

  50. Nabuurs, G.J., Sikkema, R.: The role of harvested wood products in national carbon balances – an evaluation of alternatives for IPCC guidelines. Institute for forestry and nature research (IBN-DLO) (1998). IBN-Research Report 98/3. 56

    Google Scholar 

  51. Post, W.M., Kwon, K.C.: Soil carbon sequestration and land-use change: processes and potential. Glob. Change Biol. 6, 317–327 (2000)

    Article  Google Scholar 

  52. Schlamadinger, B., Marland, G.: The kyoto protocol: provisions and unresolved issues relevant to land-use change and forestry. Environ. Sci. Policy (1) (1998)

    Google Scholar 

  53. Schlamadinger, B., Woess-Gallasch, S., Cowie, A. (eds.): Carbon Accounting and emissions trading related to bioenergy, wood products and carbon sequestration. IEA Bioenergy (2001)

    Google Scholar 

  54. Task 38, greenhouse gas balances of biomass and bioenergy systems. Workshop Proceedings, Canberra, Australia, 167–194

    Google Scholar 

  55. Sedjo, R.A.: From foraging to cropping: the transition to plantation forestry, and implications for wood supply and demand. Unasylva 52, 204 (2001)

    Google Scholar 

  56. Susmel, L.: Normalizzazione delle foreste alpine. Basi ecosistemiche, equilibrio, modelli colturali, produttività. Liviana ed., Padova (1980)

    Google Scholar 

  57. Susmel, L.: Principi di ecologia. Fattori ecologici, ecosistemica, applicazioni. Ed. CLEUP, Padova (1988)

    Google Scholar 

  58. Tassinari, G.: Manuale dell’agronomo. 5a edizione. REDA, Roma (1976)

    Google Scholar 

  59. Thoroe, C., Schweinle, J.: Life cycle analysis in forestry. “Life cycle analysis - a challenge for forestry and forest industry”. Arno Frühwald and Birger Solberg Eds. EFI Proceedings, 11–20 (1995)

    Google Scholar 

  60. Thuille, A., Buchmann, N., Schultze, E.D.: Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiol. 20, 849–857 (2000)

    Google Scholar 

  61. Tosi, V., Marchetti, M.: I sistemi informativi forestali in Italia: uniformità e divergenze tra gli inventari delle risorse forestali. L’Italia Forestale e Montana 53(5), 220-252 (1998)

    Google Scholar 

  62. Totten, M.: Getting it right: emerging markets for storing carbon in forests. Forest Trends, World Resource Institute, USA (1999)

    Google Scholar 

  63. UNEP, WMO, IUCC - Cambiamenti climatici. In: Amici della Terra, Dossier n° 206. Edizione italiana a cura del Ministero dell’Ambiente, Amici della Terra, ENEA. 57 (1995)

    Google Scholar 

  64. van Praag, H.J., Sougnez-Remy, S., Weissen, F., Carletti, G.: Root turnover in a beech and spruce stand of the Belgian Ardennes. Plant Soil 105, 87–103 (1988)

    Google Scholar 

  65. Nadelhoffer, K.J., Raich, J.W.: Fine root production estimates and beloveground carbon allocation in forest ecosystems. Ecology 73(4), 1139–1147 (1992)

    Article  Google Scholar 

  66. Violante, P.: Chimica del suolo e nutrizione delle piante. Edagricole, Bologna (1996)

    Google Scholar 

  67. Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verada, D.L., Dokken, D.L.: Land Use, Land-Use Change, and Forestry A Special Report of the IPCC. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  68. Wegener, G., Zimmer, B., Frühwald, A., Scharai-Rad, M.: Ökobilanzen holz: Fakten lesen, verstehen, und handeln. DGfH-Informationsdienst, München/Bonn (1997)

    Google Scholar 

  69. Whiteman, A., Brown, C., Bull, G.: Forest product market developments: the outlook for forest product markets to 2010 and the implications for improving management of the global forest estate. FAO, Working Paper FAO/FPIRS702. FAO, Rome (1999)

    Google Scholar 

  70. Wilson, E.O., Bossert, W.H.: Introduzione alla biologia delle popolazioni. Ed. PICCIN, Padova (1974)

    Google Scholar 

  71. Winjum, J.K., Brown, S., Schlamadinger, B.: Forest harvest and wood products: sources and sinks of atmospheric carbon dioxide. Forest Sci. 44(2), 272–284 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmelo Maria Torre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torre, C.M., Morano, P., Locurcio, M., Anelli, D. (2023). Comparing Environmental Values and CO2 Values in Geographical Contexts. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14106. Springer, Cham. https://doi.org/10.1007/978-3-031-37111-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37111-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37110-3

  • Online ISBN: 978-3-031-37111-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics