Skip to main content

Computational Modeling of Temperature-Dependent Wavefields in Fluid-Saturated Porous Media

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

A computational model is presented for simulations small amplitude wavefields in a deformable porous medium saturated with a compressible fluid under temperature variations. The model is based on the governing equations derived with the use of the theory of Symmetric Hyperbolic Thermodynamically Compatible (SHTC) systems in conjunction with the efficient staggered grid finite difference numerical method. It is numerically shown that the characteristics of wavefields in a saturated porous medium strongly depend on the porosity, which varies with temperature.

The mathematical model was developed by E. Romenski within the framework of the state contract of the Sobolev Institute of Mathematics (project no. FWNF-2022-0008). Numerical method was developed by G. Reshetova and supported by the Russian Science Foundation grant no. 22-21-00759. E. Romenski’s contribution to numerical modeling was supported by the Russian Science Foundation grant no. 22-11-00104.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romenski, E., Reshetova, G., Peshkov, I., Dumbser, M.: Modeling wavefields in saturated elastic porous media based on thermodynamically compatible system theory for two-phase solid-fluid mixtures. Comput. Fluids 206, 104587 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Reshetova, G., Romenski, E.: Diffuse interface approach to modeling wavefields in a saturated porous medium. Appl. Math. Comput. 398, 125978 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Romenski, E., Reshetova, G., Peshkov, I.: Computational model for compressible two-phase flow in deformed porous medium. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12949, pp. 224–236. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86653-2_16

    Chapter  Google Scholar 

  4. Romenski, E., Reshetova, G., Peshkov, I.: Two-phase hyperbolic model for porous media saturated with a viscous fluid and its application to wavefield simulation. Appl. Math. Model. 106, 567–600 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biot, M. A.: Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)

    Google Scholar 

  6. Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179–191 (1956)

    Google Scholar 

  7. Carcione, J.M., Morency, C., Santos, V.: Computational poroelasticity - a review. Geophysics 75(5), 75A229–75A243 (2010)

    Google Scholar 

  8. Godunov, S.K., Romenskii, E.I.: Elements of Continuum Mechanics and Conservation Laws. Springer, New York (2003). https://doi.org/10.1007/978-1-4757-5117-8

    Book  MATH  Google Scholar 

  9. Romenski, E.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Model. 28, 115–130 (1998)

    Article  MathSciNet  Google Scholar 

  10. Peshkov, I., Pavelka, M., Romenski, E., Grmela, M.: Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Continuum Mech. Thermodyn. 30, 1343–1378 (2018)

    Google Scholar 

  11. Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(1), 889–901 (1986)

    Article  Google Scholar 

  12. Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am. 86(4), 1091–1106 (1996)

    Article  Google Scholar 

  13. Samarskii, A.A.: The Theory of Difference Schemes. CRC Press, Boca Raton (2001)

    Book  MATH  Google Scholar 

  14. Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R.J., Halada, L.: 3d heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bull. Seismol. Soc. Am. 92(8), 3042–3066 (2002)

    Article  Google Scholar 

  15. Fokin, M.I., Dugarov, G.A., Duchkov, A.A.: Experimental acoustic measurements on sandy unconsolidated samples containing methane hydrate, vol. 4, p. 1940501 (2019). (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy Romenski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romenski, E., Reshetova, G. (2023). Computational Modeling of Temperature-Dependent Wavefields in Fluid-Saturated Porous Media. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14106. Springer, Cham. https://doi.org/10.1007/978-3-031-37111-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37111-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37110-3

  • Online ISBN: 978-3-031-37111-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics