Skip to main content

Minimum Environmental Criteria and Climate Issue in the Metropolitan Urban Ecosystem

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

In Italy, the adoption of the Minimum Environmental Criteria (MEC) is associated with Legislative Decree 50/2016, which regulates public tenders. The main objective of the MECs is to promote the purchase of sustainable goods and services thus contributing to the reduction of the environmental impact and the protection of natural resources. Furthermore, the adoption of MEC by public authorities represents a strategic choice to promote the circular economy, reduce waste and greenhouse gas emissions, thus preserving the quality of environmental matrices. MECs, although they are innovative tools, are however lacking in geographic information related to context analysis. In this synthetic framework, the objective of this work is to evaluate a set of contextual environmental indicators to support the MECs. In fact, the knowledge and representation of the context constitutes a fundamental action for recognizing local problems, which are also useful for understanding global issues. Furthermore, how can MECs contribute to adaptation to climate change within the relative territorial context? This question guided the manuscript and the metropolitan city of Cagliari represents the case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santus, K., Corradi, E., Lavagna, M., Valente, I.: Designing forms of regeneration. Spatial implication of strategies to face climate change at neighborhood scale. In: Calabrò, F., Della Spina, L., Piñeira Mantiñán, M.J. (eds.) NMP 2022, pp. 1621–1630. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06825-6_156

  2. Weckroth, M., Ala-Mantila, S.: Socioeconomic geography of climate change views in Europe. Glob. Environ. Chang. 72, 102453 (2022)

    Article  Google Scholar 

  3. Pörtner, H.O., et al.: Climate change 2022: impacts, adaptation and vulnerability, p. 3056. IPCC, Geneva, Switzerland (2022)

    Google Scholar 

  4. Fantini, A.: Climate change impact on flood hazard over Italy (2019)

    Google Scholar 

  5. Yang, M., Wang, H., Yu, C.W., Cao, S.J.: A global challenge of accurately predicting building energy consumption under urban heat island effect. Indoor Built Environ. 32(3), 455–459 (2023)

    Article  Google Scholar 

  6. Huovila, A., et al.: Carbon-neutral cities: critical review of theory and practice. J. Cleaner Prod. 130912 (2022)

    Google Scholar 

  7. Balletto, G., Ladu, M., Camerin, F., Ghiani, E., Torriti, J.: More circular city in the energy and ecological transition: a methodological approach to sustainable urban regeneration. Sustainability 14(22), 14995 (2022)

    Article  Google Scholar 

  8. Grossi, G., Barontini, S., Berteni, F., Balistrocchi, M., Ranzi, R.: Nature-based solutions as climate change adaptation and mitigation measures in Italy. In: Climate Change-Sensitive Water Resources Management, pp. 90–100. CRC Press (2020)

    Google Scholar 

  9. Bassi, A., Ottone, C., Dell’Ovo, M.: Minimum environmental criteria in the architectural project. Trade-off between environmental, economic and social sustainability. Valori e Valutazioni (22) (2019)

    Google Scholar 

  10. Shang, S.: A multiple criteria decision-making approach to estimate minimum environmental flows based on wetted perimeter. River Res. Appl. 24(1), 54–67 (2008)

    Article  MathSciNet  Google Scholar 

  11. Murgante, B., et al.: Health hazard scenarios in Italy after the COVID-19 outbreak: a methodological proposal. Scienze Regionali 20(3), 327–354 (2021)

    Google Scholar 

  12. Balletto, G., Borruso, G., Donato, C.: City dashboards and the Achilles’ heel of smart cities: putting governance in action and in space. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10962, pp. 654–668. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95168-3_44

    Chapter  Google Scholar 

  13. Howard, L.: The Climate of London: Deduced from Meteorological Observations, vol. 1. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  14. Urso, G.: Metropolisation and the challenge of rural-urban dichotomies. Urban Geogr. 42(1), 37–57 (2021)

    Article  Google Scholar 

  15. Belay, T., Mengistu, D.A.: Impacts of land use/land cover and climate changes on soil erosion in Muga watershed, Upper Blue Nile basin (Abay), Ethiopia. Ecol. Process. 10(1), 1–23 (2021)

    Article  Google Scholar 

  16. Pamukcu-Albers, P., Ugolini, F., La Rosa, D., Grădinaru, S.R., Azevedo, J.C., Wu, J.: Building green infrastructure to enhance urban resilience to climate change and pandemics. Landscape Ecol. 36(3), 665–673 (2021). https://doi.org/10.1007/s10980-021-01212-y

    Article  Google Scholar 

  17. Olabi, A.G., Abdelkareem, M.A.: Renewable energy and climate change. Renew. Sustain. Energy Rev. 158, 112111 (2022)

    Article  Google Scholar 

  18. Manabe, S.: Role of greenhouse gas in climate change. Tellus A: Dyn. Meteorol. Oceanogr. 71(1), 1620078 (2019)

    Article  Google Scholar 

  19. Moya Ortiz, D.: Rethinking the metropolisation process in the global crisis. The Evolving Scholar (2021)

    Google Scholar 

  20. Balletto, G., Borruso, G., Donato, C.: City dashboards and the Achilles’ heel of smart cities: putting governance in action and in space. In: Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y. (eds.) ICCSA 2018. LNCS, vol. 10962, pp. 654–668. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95168-3_44

    Chapter  Google Scholar 

  21. Marando, F., et al.: Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 77, 103564 (2022)

    Google Scholar 

  22. Morabito, M., Crisci, A., Guerri, G., Messeri, A., Congedo, L., Munafò, M.: Surface urban heat islands in Italian metropolitan cities: tree cover and impervious surface influences. Sci. Total Environ. 751, 142334 (2021)

    Google Scholar 

  23. Phelps, N.A.: The Urban Planning Imagination: A Critical International Introduction. Wiley, Hoboken (2021)

    Google Scholar 

  24. Balletto, G., Sinatra, M., Mura, R., Borruso, G.: Climate variation in metropolitan cities. TeMA-J. Land Use Mobility Environ. 15(3), 501–516 (2022)

    Google Scholar 

  25. Profili delle città metropolitan. https://www.istat.it/it/files//2023/02/Statistica-Focus-Citt%C3%A0-Metropolitane.pdf. Accessed 16 Feb 2023

  26. Dijkstra, L., Poelman, H., Veneri, P.: The EU-OECD definition of a functional urban area (2019)

    Google Scholar 

  27. Liu, J., Kang, J., Luo, T., Behm, H., Coppack, T.: Spatiotemporal variability of soundscapes in a multiple functional urban area. Landsc. Urban Plan. 115, 1–9 (2013)

    Article  Google Scholar 

  28. Kuik, O.J., Verbruggen, H. (eds.): In Search of Indicators of Sustainable Development, vol. 1. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-011-3246-6

  29. Lowe, M., et al.: City planning policies to support health and sustainability: an international comparison of policy indicators for 25 cities. Lancet Global Health 10(6), e882–e894 (2022)

    Google Scholar 

  30. Tobler, W.R.: A computer movie simulating urban growth in the Detroit Region. Econ. Geogr. 46, 234–240 (1970)

    Article  Google Scholar 

  31. Tobler, W.: On the first law of geography: a reply. Ann. Assoc. Am. Geogr. 94(2), 304–310 (2004)

    Article  Google Scholar 

  32. Sui, D.Z.: Tobler’s first law of geography: a big idea for a small world? Ann. Assoc. Am. Geogr. 94(2), 269–277 (2004)

    Article  Google Scholar 

  33. Lee, J., Wong, D.W.S., David, W.S.: GIS and Statistical Analysis with ArcView. Wiley, Hoboken (2000)

    Google Scholar 

  34. Geary, R.C.: The contiguity ratio and statistical mapping. Incorporated Stat. 5(3), 115–146 (1954)

    Article  Google Scholar 

  35. Moran, P.A.P.: The interpretation of statistical maps. J. Roy. Stat. Soc. B 10(2), 243–251 (1948)

    MathSciNet  MATH  Google Scholar 

  36. Murgante, B., Borruso, G.: Analyzing migration phenomena with spatial autocorrelation techniques. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7334, pp. 670–685. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31075-1_50

    Chapter  Google Scholar 

  37. Anselin, L.: Spatial Econometrics: Methods and Models. Springer, Dordrecht (1988). https://doi.org/10.1007/978-94-015-7799-1

    Book  MATH  Google Scholar 

  38. Anselin, L.: Local indicators of spatial association - LISA. Geogr. Anal. 27(2), 93–115 (1995)

    Google Scholar 

  39. O’Sullivan, D., Unwin, D.J.: Geographic Information Analysis, 2nd edn. Wiley, Hoboken (2010)

    Book  Google Scholar 

  40. European Data Journalism Network, Glocal Climate Change. https://climatechange.europeandatajournalism.eu/it/. Accessed 20 Mar 2023

  41. ISTAT Homepage. http://dati.istat.it/. Accessed 31 Mar 2023

  42. Balletto, G., Borruso, G., Mei, G., Milesi, A.: Strategic circular economy in construction: case study in Sardinia, Italy. J. Urban Plann. Dev. 147(4), 05021034 (2021)

    Article  Google Scholar 

  43. Renard, F., Alonso, L., Fitts, Y., Hadjiosif, A., Comby, J.: Evaluation of the effect of urban redevelopment on surface urban heat islands. Remote Sens. 11(3), 299 (2019)

    Article  Google Scholar 

  44. Fonseca, A., de Brito, L.L.A., Gibson, R.B.: Methodological pluralism in environmental impact prediction and significance evaluation: a case for standardization? Environ. Impact Assess. Rev. 80, 106320 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by Projects Ecosystem of Innovation for Next Generation Sardinia (e.INS) - approved by MUR, prot. n. 1056 of 23/06/2022; also, this publication was produced while attending the PhD programme in Civil Engineering and Architecture at the University of Cagliari, Cycle XXXVIII, with the support of a scholarship co-financed by the Ministerial Decree no. 352 of 9th April 2022, based on the NRRP - funded by the European Union - NextGenerationEU - Mission 4 “Education and Research”, Component 2 “From Research to Business”, Investment 3.3, and by the company MLab srl.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, formal analysis, materials and resources, software, data curation and validation: all authors. In particular: Balletto wrote Sect. 1, Sect. 2; Sect. 2.2; Borruso and Sinatra wrote Sect. 2.1; Sinatra wrote Sect. 2.2, Sect. 3; Balletto and Sinatra wrote Sect. 4; Balletto and Borruso wrote Sect. 5.

Corresponding author

Correspondence to Martina Sinatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sinatra, M., Balletto, G., Borruso, G. (2023). Minimum Environmental Criteria and Climate Issue in the Metropolitan Urban Ecosystem. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14109. Springer, Cham. https://doi.org/10.1007/978-3-031-37120-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37120-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37119-6

  • Online ISBN: 978-3-031-37120-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics