Skip to main content

Coding Cross Sections of an Electron Charge Transfer Process: Analysis of Different Cuts for the Entrance and Exit Potentials

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

The paper presents the algorithm of a code written for exploring the collision dynamics of an electron transfer process between a neutral species and helium cation. Cuts of the entrance and exit potential energy surfaces are calculated in function of the radial distance to the center of mass of the neutral molecule, inclination angle and azimuth. Entrance and exit potential are calculated accounting for the electrostatic contribution and for non-electrostatic forces by employing the Improved Lennard-Jones function.

The code implemented has been employed in systems involving helium cation and a small organic molecule, such as methanol, dimethyl ether and methyl formate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGuire, B.A.: 2021 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. Astrophys. J. Suppl. Ser. 259(2), 30 (2022). https://doi.org/10.3847/1538-4365/ac2a48

    Article  Google Scholar 

  2. Müller, H.S.P., Thorwirth, S., Roth, D.A., Winnewisser, G.: The cologne database for molecular spectroscopy, CDMS. A & A 370(3), L49–L52 (2001). https://doi.org/10.1051/0004-6361:20010367. https://cdms.astro.uni-koeln.de/classic/molecules. Accessed 13 April 2022

  3. Müller, H.S., Schlöder, F., Stutzki, J., Winnewisser, G.: The cologne database for molecular spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol. Struct. 742(1), 215–227 (2005). https://doi.org/10.1016/j.molstruc.2005.01.027

    Article  Google Scholar 

  4. Endres, C.P., Schlemmer, S., Schilke, P., Stutzki, J., Müller, H.S.: The cologne database for molecular spectroscopy, CDMS, In the virtual atomic and molecular data centre, VAMDC. J. Molecular Spectroscopy 327, 95–104 (2016). https://doi.org/10.1016/j.jms.2016.03.005. New Visions of Spectroscopic Databases, Volume II

  5. Herbst, E., Van Dishoeck, E.F.: Complex organic interstellar molecules. Ann. Rev. Astron. Astrophys. 47, 427–480 (2009)

    Article  Google Scholar 

  6. Ceccarelli, C., et al.: Seeds of life in space (SOLIS): the organic composition diversity at 300–1000 au scale in solar-type star-forming regions. Astrophys. J. 850(2), 176 (2017)

    Article  Google Scholar 

  7. Caselli, P., Ceccarelli, C.: Our astrochemical heritage. Astron. Astrophys. Rev. 20(1), 1–68 (2012). https://doi.org/10.1007/s00159-012-0056-x

    Article  Google Scholar 

  8. Herbst, E.: The synthesis of large interstellar molecules. Int. Rev. Phys. Chem. 36(2), 287–331 (2017)

    Article  Google Scholar 

  9. Agúndez, M., Wakelam, V.: Chemistry of dark clouds: databases, networks, and models. Chem. Rev. 113(12), 8710–8737 (2013)

    Article  Google Scholar 

  10. Taquet, V., Ceccarelli, C., Kahane, C.: Multilayer modeling of porous grain surface chemistry-I. GRAINOBLE Model. Astron. Astrophys. 538, A42 (2012)

    Google Scholar 

  11. Garrod, R., Herbst, E.: Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. Astron. Astrophys. 457(3), 927–936 (2006)

    Article  Google Scholar 

  12. Vasyunin, A.I., Caselli, P., Dulieu, F., Jiménez-Serra, I.: Formation of complex molecules in prestellar cores: a multilayer approach. Astrophys. J. 842(1), 33 (2017)

    Article  Google Scholar 

  13. Garrod, R.T., Weaver, S.L.W., Herbst, E.: Complex chemistry in star-forming regions: an expanded gas-grain warm-up chemical model. Astrophys. J. 682(1), 283 (2008)

    Article  Google Scholar 

  14. Balucani, N., Ceccarelli, C., Taquet, V.: Formation of complex organic molecules in cold objects: the role of gas-phase reactions. Monthly Notices Royal Astron. Soc.: Lett. 449(1), L16–L20 (2015)

    Article  Google Scholar 

  15. Skouteris, D., et al.: The genealogical tree of ethanol: gas-phase formation of glycolaldehyde, acetic acid, and formic acid. Astrophys. J. 854(2), 135 (2018)

    Article  Google Scholar 

  16. Rosi, M., et al.: Possible scenarios for SiS formation in the interstellar medium: Electronic structure calculations of the potential energy surfaces for the reactions of the SiH radical with atomic sulphur and S\(_2\). Chem. Phys. Lett. 695, 87–93 (2018). https://doi.org/10.1016/j.cplett.2018.01.053

    Article  Google Scholar 

  17. Wakelam, V., et al.: A kinetic database for astrochemistry (KIDA). ApJS 199(1), 21 (2012). https://doi.org/10.1088/0067-0049/199/1/21

    Article  Google Scholar 

  18. Woodall, J., Agúndez, M., Markwick-Kemper, A.J., Millar, T.J.: The UMIST database for astrochemistry 2006*. A &A 466(3), 1197–1204 (2007). https://doi.org/10.1051/0004-6361:20064981

    Article  Google Scholar 

  19. Lepp, S., Stancil, P., Dalgarno, A.: Atomic and molecular processes in the early Universe. J. Phys. B: At. Mol. Opt. Phys. 35(10), R57 (2002)

    Article  Google Scholar 

  20. De Fazio, D.: The H + HeH\(^+\rightarrow \) He\(^+\) H\(_2^+\) reaction from the ultra-cold regime to the three-body breakup: exact quantum mechanical integral cross sections and rate constants. Phys. Chem. Chem. Phys. 16(23), 11662–11672 (2014). https://doi.org/10.1039/C4CP00502C

    Article  Google Scholar 

  21. Mallard, W., Linstrom, P.: NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg, MD 20899 (2000). https://doi.org/10.18434/T4D303

  22. de Aragão, E.V.F., et al.: Coding cross sections of an electron charge transfer process. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications - ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol. 13382, pp. 319–333. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10592-0_24

  23. Albertí, M., Faginas-Lago, N., Laganà, A., Pirani, F.: Phys. Chem. Chem. Phys. 13(18), 8422 (2011)

    Google Scholar 

  24. Faginas Lago, N., Albertí, M., Lombardi, A., Pirani, F.: A force field for acetone: the transition from small clusters to liquid phase investigated by molecular dynamics simulations. Theoret. Chem. Acc. 135(7), 1–9 (2016). https://doi.org/10.1007/s00214-016-1914-9

    Article  Google Scholar 

  25. Pirani, F., Brizi, S., Roncaratti, L.F., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 10(36), 5489–5503 (2008)

    Article  Google Scholar 

  26. Pirani, F., Albertí, M., Castro, A., Moix Teixidor, M., Cappelletti, D.: Atom-bond pairwise additive representation for intermolecular potential energy surfaces. Chem. Phys. Lett. 394(1–3), 37–44 (2004). https://doi.org/10.1016/j.cplett.2004.06.100

    Article  Google Scholar 

  27. Bartolomei, M., et al.: The intermolecular potential in NO-N\(_{2}\) and (NO-N\(_{2}\))\(^+\) systems: implications for the neutralization of ionic molecular aggregates. Phys. Chem. Chem. Phys. 10, 5993–6001 (2008). https://doi.org/10.1039/B808200F

    Article  Google Scholar 

  28. Cappelletti, D., Pirani, F., Bussery-Honvault, B., Gomez, L., Bartolomei, M.: A bond-bond description of the intermolecular interaction energy: the case of weakly bound N\(_{2}\)-H\(_{2}\) and N\(_{2}\)-N\(_{2}\) complexes. Phys. Chem. Chem. Phys. 10, 4281–4293 (2008). https://doi.org/10.1039/B803961E

    Article  Google Scholar 

  29. Pacifici, L., Verdicchio, M., Faginas-Lago, N., Lombardi, A., Costantini, A.: A high-level ab initio study of the N\(_{2}\) + N\(_{2}\) reaction channel. J. Comput. Chem. 34(31), 2668–2676 (2013). https://doi.org/10.1002/jcc.23415

    Article  Google Scholar 

  30. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(1), 1–17 (2012)

    Article  Google Scholar 

  31. Cernuto, A., Tosi, P., Martini, L.M., Pirani, F., Ascenzi, D.: Experimental investigation of the reaction of helium ions with dimethyl ether: stereodynamics of the dissociative charge exchange process. Phys. Chem. Chem. Phys. 19(30), 19554–19565 (2017). https://doi.org/10.1039/C7CP00827A

    Article  Google Scholar 

  32. Cernuto, A., Pirani, F., Martini, L.M., Tosi, P., Ascenzi, D.: The Selective Role of Long-Range Forces in the Stereodynamics of Ion-Molecule Reactions: the He\(^+\) + Methyl Formate Case From Guided-Ion-Beam Experiments. Chem. Phys. Chem. 19(1), 51–59 (2018). https://doi.org/10.1002/cphc.201701096

    Article  Google Scholar 

  33. Richardson, V., et al.: Fragmentation of interstellar methanol by collisions with he+: an experimental and computational study. Phys. Chem. Chem. Phys. 24(37), 22437–22452 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Andrea Cernuto who originally developed the code. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 811312 for the project “Astro-Chemical Origins” (ACO).

The authors thank the Herla Project(http://www.hpc.unipg.it/hosting/vherla/vherla.html)-Università degli Studi di Perugia for allocated computing time.

N.F-L acknowledges also Fondazione Cassa di Risparmio di Perugia n 19839_2020_0513 to C.E.

D.A. and M.R. acknowledge funding from MUR PRIN 2020 project n. 2020AFB3FX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noelia Faginas-Lago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faginas-Lago, N., de Aragão, E.V.F., Mancini, L., Rosi, M., Ascenzi, D., Pirani, F. (2023). Coding Cross Sections of an Electron Charge Transfer Process: Analysis of Different Cuts for the Entrance and Exit Potentials. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14111. Springer, Cham. https://doi.org/10.1007/978-3-031-37126-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37126-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37125-7

  • Online ISBN: 978-3-031-37126-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics