Abstract
The paper presents the algorithm of a code written for exploring the collision dynamics of an electron transfer process between a neutral species and helium cation. Cuts of the entrance and exit potential energy surfaces are calculated in function of the radial distance to the center of mass of the neutral molecule, inclination angle and azimuth. Entrance and exit potential are calculated accounting for the electrostatic contribution and for non-electrostatic forces by employing the Improved Lennard-Jones function.
The code implemented has been employed in systems involving helium cation and a small organic molecule, such as methanol, dimethyl ether and methyl formate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
McGuire, B.A.: 2021 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. Astrophys. J. Suppl. Ser. 259(2), 30 (2022). https://doi.org/10.3847/1538-4365/ac2a48
Müller, H.S.P., Thorwirth, S., Roth, D.A., Winnewisser, G.: The cologne database for molecular spectroscopy, CDMS. A & A 370(3), L49–L52 (2001). https://doi.org/10.1051/0004-6361:20010367. https://cdms.astro.uni-koeln.de/classic/molecules. Accessed 13 April 2022
Müller, H.S., Schlöder, F., Stutzki, J., Winnewisser, G.: The cologne database for molecular spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol. Struct. 742(1), 215–227 (2005). https://doi.org/10.1016/j.molstruc.2005.01.027
Endres, C.P., Schlemmer, S., Schilke, P., Stutzki, J., Müller, H.S.: The cologne database for molecular spectroscopy, CDMS, In the virtual atomic and molecular data centre, VAMDC. J. Molecular Spectroscopy 327, 95–104 (2016). https://doi.org/10.1016/j.jms.2016.03.005. New Visions of Spectroscopic Databases, Volume II
Herbst, E., Van Dishoeck, E.F.: Complex organic interstellar molecules. Ann. Rev. Astron. Astrophys. 47, 427–480 (2009)
Ceccarelli, C., et al.: Seeds of life in space (SOLIS): the organic composition diversity at 300–1000 au scale in solar-type star-forming regions. Astrophys. J. 850(2), 176 (2017)
Caselli, P., Ceccarelli, C.: Our astrochemical heritage. Astron. Astrophys. Rev. 20(1), 1–68 (2012). https://doi.org/10.1007/s00159-012-0056-x
Herbst, E.: The synthesis of large interstellar molecules. Int. Rev. Phys. Chem. 36(2), 287–331 (2017)
Agúndez, M., Wakelam, V.: Chemistry of dark clouds: databases, networks, and models. Chem. Rev. 113(12), 8710–8737 (2013)
Taquet, V., Ceccarelli, C., Kahane, C.: Multilayer modeling of porous grain surface chemistry-I. GRAINOBLE Model. Astron. Astrophys. 538, A42 (2012)
Garrod, R., Herbst, E.: Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. Astron. Astrophys. 457(3), 927–936 (2006)
Vasyunin, A.I., Caselli, P., Dulieu, F., Jiménez-Serra, I.: Formation of complex molecules in prestellar cores: a multilayer approach. Astrophys. J. 842(1), 33 (2017)
Garrod, R.T., Weaver, S.L.W., Herbst, E.: Complex chemistry in star-forming regions: an expanded gas-grain warm-up chemical model. Astrophys. J. 682(1), 283 (2008)
Balucani, N., Ceccarelli, C., Taquet, V.: Formation of complex organic molecules in cold objects: the role of gas-phase reactions. Monthly Notices Royal Astron. Soc.: Lett. 449(1), L16–L20 (2015)
Skouteris, D., et al.: The genealogical tree of ethanol: gas-phase formation of glycolaldehyde, acetic acid, and formic acid. Astrophys. J. 854(2), 135 (2018)
Rosi, M., et al.: Possible scenarios for SiS formation in the interstellar medium: Electronic structure calculations of the potential energy surfaces for the reactions of the SiH radical with atomic sulphur and S\(_2\). Chem. Phys. Lett. 695, 87–93 (2018). https://doi.org/10.1016/j.cplett.2018.01.053
Wakelam, V., et al.: A kinetic database for astrochemistry (KIDA). ApJS 199(1), 21 (2012). https://doi.org/10.1088/0067-0049/199/1/21
Woodall, J., Agúndez, M., Markwick-Kemper, A.J., Millar, T.J.: The UMIST database for astrochemistry 2006*. A &A 466(3), 1197–1204 (2007). https://doi.org/10.1051/0004-6361:20064981
Lepp, S., Stancil, P., Dalgarno, A.: Atomic and molecular processes in the early Universe. J. Phys. B: At. Mol. Opt. Phys. 35(10), R57 (2002)
De Fazio, D.: The H + HeH\(^+\rightarrow \) He\(^+\) H\(_2^+\) reaction from the ultra-cold regime to the three-body breakup: exact quantum mechanical integral cross sections and rate constants. Phys. Chem. Chem. Phys. 16(23), 11662–11672 (2014). https://doi.org/10.1039/C4CP00502C
Mallard, W., Linstrom, P.: NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg, MD 20899 (2000). https://doi.org/10.18434/T4D303
de Aragão, E.V.F., et al.: Coding cross sections of an electron charge transfer process. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Garau, C. (eds.) Computational Science and Its Applications - ICCSA 2022 Workshops. ICCSA 2022. Lecture Notes in Computer Science, vol. 13382, pp. 319–333. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10592-0_24
Albertí, M., Faginas-Lago, N., Laganà, A., Pirani, F.: Phys. Chem. Chem. Phys. 13(18), 8422 (2011)
Faginas Lago, N., Albertí, M., Lombardi, A., Pirani, F.: A force field for acetone: the transition from small clusters to liquid phase investigated by molecular dynamics simulations. Theoret. Chem. Acc. 135(7), 1–9 (2016). https://doi.org/10.1007/s00214-016-1914-9
Pirani, F., Brizi, S., Roncaratti, L.F., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys. Chem. Chem. Phys. 10(36), 5489–5503 (2008)
Pirani, F., Albertí, M., Castro, A., Moix Teixidor, M., Cappelletti, D.: Atom-bond pairwise additive representation for intermolecular potential energy surfaces. Chem. Phys. Lett. 394(1–3), 37–44 (2004). https://doi.org/10.1016/j.cplett.2004.06.100
Bartolomei, M., et al.: The intermolecular potential in NO-N\(_{2}\) and (NO-N\(_{2}\))\(^+\) systems: implications for the neutralization of ionic molecular aggregates. Phys. Chem. Chem. Phys. 10, 5993–6001 (2008). https://doi.org/10.1039/B808200F
Cappelletti, D., Pirani, F., Bussery-Honvault, B., Gomez, L., Bartolomei, M.: A bond-bond description of the intermolecular interaction energy: the case of weakly bound N\(_{2}\)-H\(_{2}\) and N\(_{2}\)-N\(_{2}\) complexes. Phys. Chem. Chem. Phys. 10, 4281–4293 (2008). https://doi.org/10.1039/B803961E
Pacifici, L., Verdicchio, M., Faginas-Lago, N., Lombardi, A., Costantini, A.: A high-level ab initio study of the N\(_{2}\) + N\(_{2}\) reaction channel. J. Comput. Chem. 34(31), 2668–2676 (2013). https://doi.org/10.1002/jcc.23415
Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4(1), 1–17 (2012)
Cernuto, A., Tosi, P., Martini, L.M., Pirani, F., Ascenzi, D.: Experimental investigation of the reaction of helium ions with dimethyl ether: stereodynamics of the dissociative charge exchange process. Phys. Chem. Chem. Phys. 19(30), 19554–19565 (2017). https://doi.org/10.1039/C7CP00827A
Cernuto, A., Pirani, F., Martini, L.M., Tosi, P., Ascenzi, D.: The Selective Role of Long-Range Forces in the Stereodynamics of Ion-Molecule Reactions: the He\(^+\) + Methyl Formate Case From Guided-Ion-Beam Experiments. Chem. Phys. Chem. 19(1), 51–59 (2018). https://doi.org/10.1002/cphc.201701096
Richardson, V., et al.: Fragmentation of interstellar methanol by collisions with he+: an experimental and computational study. Phys. Chem. Chem. Phys. 24(37), 22437–22452 (2022)
Acknowledgements
The authors thank Andrea Cernuto who originally developed the code. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 811312 for the project “Astro-Chemical Origins” (ACO).
The authors thank the Herla Project(http://www.hpc.unipg.it/hosting/vherla/vherla.html)-Università degli Studi di Perugia for allocated computing time.
N.F-L acknowledges also Fondazione Cassa di Risparmio di Perugia n 19839_2020_0513 to C.E.
D.A. and M.R. acknowledge funding from MUR PRIN 2020 project n. 2020AFB3FX.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Faginas-Lago, N., de Aragão, E.V.F., Mancini, L., Rosi, M., Ascenzi, D., Pirani, F. (2023). Coding Cross Sections of an Electron Charge Transfer Process: Analysis of Different Cuts for the Entrance and Exit Potentials. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14111. Springer, Cham. https://doi.org/10.1007/978-3-031-37126-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-37126-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37125-7
Online ISBN: 978-3-031-37126-4
eBook Packages: Computer ScienceComputer Science (R0)