Abstract
Electromagnetic induction (EMI) methods are often used to map rapidly large areas with minimal logistical efforts. However, they are limited by a small number of frequencies and by their severe ill-posedness. On the other hand, electrical resistivity tomography (ERT) results are generally considered more reliable, with no need for specific calibration procedures and easy 2D/3D inversion. Still, ERT surveys are definitely more time-consuming, and, ideally, an approach with the advantages of both EMI and ERT would be optimal. The present research addresses this issue by incorporating realistic constraints into EMI inversion, going beyond simplistic spatial constraints like smooth or sharp regularization terms, while taking into consideration the ancillary information already available about the investigated site. We demonstrate how additional pre-existing information, such as a reference model (i.e., an existing ERT section) can enhance the EMI inversion. The study verifies the results against observations from boreholes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Guillemoteau, J., Christensen, N.B., Jacobsen, B.H., Tronicke, J.: Fast 3D multichannel deconvolution of electromagnetic induction loop-loop apparent conductivity data sets acquired at low induction numbers. Geophysics 82(6), E357–E369 (2017)
Koganti, T., Van De Vijver, E., Allred, B.J., Greve, M.H., Ringgaard, J., Iversen, B.V.: Mapping of agricultural subsurface drainage systems using a frequency-domain ground penetrating radar and evaluating its performance using a single-frequency multi-receiver electromagnetic induction instrument. Sensors 20(14), 3922 (2020)
Karshakov, E.V., Podmogov, Y.G., Kertsman, V.M., Moilanen, J.: Combined frequency domain and time domain airborne data for environmental and engineering challenges. J. Environ. Eng. Geophys. 22(1), 1–11 (2017)
Yin, C., Hodges, G.: 3D animated visualization of EM diffusion for a frequency-domain helicopter EM system. Geophysics 72(1), F1–F7 (2007)
Won, I.J., Oren, A., Funak, F.: GEM-2A: A programmable broadband helicopter-towed electromagnetic sensorGEM-2A HEM Sensor. Geophysics 68(6), 1888–1895 (2003)
Dzikunoo, E.A., Vignoli, G., Jørgensen, F., Yidana, S.M., Banoeng-Yakubo, B.: New regional stratigraphic insights from a 3D geological model of the Nasia sub-basin, Ghana, developed for hydrogeological purposes and based on reprocessed B-field data originally collected for mineral exploration. Solid Earth 11(2), 349–361 (2020)
Thiesson, J., Kessouri, P., Schamper, C., Tabbagh, A.: Calibration of frequency-domain electromagnetic devices used in near-surface surveying. Near Surface Geophys. 12(4), 481–491 (2014)
Foged, N., Auken, E., Christiansen, A.V., Sørensen, K.I.: Test-site calibration and validation of airborne and ground-based TEM systems. Geophysics 78(2), E95–E106 (2013)
Ley-Cooper, Y., Macnae, J., Robb, T., Vrbancich, J.: Identification of calibration errors in helicopter electromagnetic (HEM) data through transform to the altitude-corrected phase-amplitude domain. Geophysics 71(2), G27–G34 (2006)
Triantafilis, J., Laslett, G.M., McBratney, A.B.: Calibrating an electromagnetic induction instrument to measure salinity in soil under irrigated cotton. Soil Sci. Soc. Am. J. 64(3), 1009–1017 (2000)
Minsley, B.J., Smith, B.D., Hammack, R., Sams, J.I., Veloski, G.: Calibration and filtering strategies for frequency domain electromagnetic data. J. Appl. Geophys. 80, 56–66 (2012)
Bai, P., Vignoli, G., Hansen, T.M.: 1D stochastic inversion of airborne time-domain electromagnetic data with realistic prior and accounting for the forward modeling error. Remote Sensing 13(19), 3881 (2021)
Hansen, T.M., Cordua, K.S., Jacobsen, B.H., Mosegaard, K.: Accounting for imperfect forward modeling in geophysical inverse problems—exemplified for crosshole tomography. Geophysics 79(3), H1–H21 (2014)
Viezzoli, A., Auken, E., Munday, T.: Spatially constrained inversion for quasi 3D modelling of airborne electromagnetic data–an application for environmental assessment in the Lower Murray Region of South Australia. Explor. Geophys. 40(2), 173–183 (2009)
Brodie, R., Sambridge, M.: A holistic approach to inversion of frequency-domain airborne EM data. Geophysics 71(6), G301–G312 (2006)
McLachlan, P., Blanchy, G., Binley, A.: EMagPy: open-source standalone software for processing, forward modeling and inversion of electromagnetic induction data. Comput. Geosci. 146, 104561 (2021)
Vignoli, G., Fiandaca, G., Christiansen, A.V., Kirkegaard, C., Auken, E.: Sharp spatially constrained inversion with applications to transient electromagnetic data. Geophys. Prospect. 63(1), 243–255 (2015)
Klose, T., Guillemoteau, J., Vignoli, G., Tronicke, J.: Laterally constrained inversion (LCI) of multi-configuration EMI data with tunable sharpness. J. Appl. Geophys. 196, 104519 (2022)
Vignoli, G., Sapia, V., Menghini, A., Viezzoli, A.: Examples of improved inversion of different airborne electromagnetic datasets via sharp regularization. J. Environ. Eng. Geophys. 22(1), 51–61 (2017)
Ley-Cooper, A.Y., et al.: Airborne electromagnetic modelling options and their consequences in target definition. Explor. Geophys. 46(1), 74–84 (2015)
Klose, T., Guillemoteau, J., Vignoli, G., Walter, J., Herrmann, A., Tronicke, J.: Structurally constrained inversion by means of a Minimum Gradient Support regularizer: examples of FD-EMI data inversion constrained by GPR reflection data. Geophys. J. Int. 233(3), 1938–1949 (2023)
Pagliara, G., Vignoli, G.: Focusing inversion techniques applied to electrical resistance tomography in an experimental tank. In: XI International Congress Proceedings of the International Association for Mathematical Geology, Liege, Belgium (2006)
Thibaut, R., Kremer, T., Royen, A., Ngun, B.K., Nguyen, F., Hermans, T.: A new workflow to incorporate prior information in minimum gradient support (MGS) inversion of electrical resistivity and induced polarization data. J. Appl. Geophys. 187, 104286 (2021)
Fiandaca, G., Doetsch, J., Vignoli, G., Auken, E.: Generalized focusing of time-lapse changes with applications to direct current and time-domain induced polarization inversions. Geophys. J. Int. 203(2), 1101–1112 (2015)
Karaoulis, M., Revil, A., Tsourlos, P., Werkema, D.D., Minsley, B.J.: IP4DI: a software for time-lapse 2D/3D DC-resistivity and induced polarization tomography. Comput. Geosci. 54, 164–170 (2013)
Zhou, J., Revil, A., Karaoulis, M., Hale, D., Doetsch, J., Cuttler, S.: Image-guided inversion of electrical resistivity data. Geophys. J. Int. 197(1), 292–309 (2014)
Vignoli, G., Guillemoteau, J., Barreto, J., Rossi, M.: Reconstruction, with tunable sparsity levels, of shear wave velocity profiles from surface wave data. Geophys. J. Int. 225(3), 1935–1951 (2021)
Hansen, T.M.: Efficient probabilistic inversion using the rejection sampler - exemplified on airborne EM data. Geophys. J. Int. 224(1), 543–557 (2021)
Hansen, T.M., Minsley, B.J.: Inversion of airborne EM data with an explicit choice of prior model. Geophys. J. Int. 218(2), 1348–1366 (2019)
Mosegaard, K., Tarantola, A.: Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. Solid Earth 100(B7), 12431–12447 (1995)
Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems, 1st edn. V. H. Winston & Sons, Washington, U.S.A. (1977)
Rücker, C., Günther, T., Wagner, F.M.: pyGIMLi: an open-source library for modelling and inversion in geophysics. Comput. Geosci. 109, 106–123 (2017)
Høyer, A.S., Vignoli, G., Hansen, T.M., Vu, L.T., Keefer, D.A., Jørgensen, F.: Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies. Hydrol. Earth Syst. Sci. 21(12), 6069–6089 (2017)
Bai, P., Vignoli, G., Viezzoli, A., Nevalainen, J., Vacca, G.: (Quasi-) real-time inversion of airborne time-domain electromagnetic data via artificial neural network. Remote Sens. 12(20), 3440 (2020)
Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer, Germany (2012). https://doi.org/10.1007/978-1-4612-0745-0
Zhdanov, M.S., Vignoli, G., Ueda, T.: Sharp boundary inversion in crosswell travel-time tomography. J. Geophys. Eng. 3(2), 122–134 (2006)
Haynie, K.L., Khan, S.D.: Shallow subsurface detection of buried weathered hydrocarbons using GPR and EMI. Mar. Pet. Geol. 77, 116–123 (2016)
Rashed, M., Niyazi, B.: Environmental impact assessment of the former Al-Musk lake wastewater dumpsite using electromagnetic induction technique. Earth Syst. Environ. 1(1), 1–10 (2017)
Torin, L., Davidsson, L., Nilsson, M.: Inledandeprojektering av Nisses kemtvätt i Osby. Report for Sveriges Geologiska Undersökning by WSP Environmental Sverige, Sweden (2021)
Acknowledgments
The authors are very grateful to Dr. Henning Persson (Geological Survey of Sweden, SGU) for his support during the survey and for providing the background material. In addition, many thanks are due to the Engineering Geology Division of Lund University for its logistical support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zaru, N., Rossi, M., Vacca, G., Vignoli, G. (2023). (Pseudo-)3D Inversion of Geophysical Electromagnetic Induction Data by Using an Arbitrary Prior and Constrained to Ancillary Information. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14111. Springer, Cham. https://doi.org/10.1007/978-3-031-37126-4_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-37126-4_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37125-7
Online ISBN: 978-3-031-37126-4
eBook Packages: Computer ScienceComputer Science (R0)