Skip to main content

The Kaplan-Meier Estimator: New Insights and Applications in Multi-state Survival Analysis

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14112))

Included in the following conference series:

Abstract

A topic that has received attention in statistical and medical literature is the estimation of survival for which the Kaplan-Meier product-limit estimator is the most commonly used estimator. This estimator is considered nonparametric because it does not rely on any assumptions about the probability distribution of the lifetime. The best known representation of the Kaplan-Meier estimator is based on a product of elementary probabilities whose underlying idea is the computation of conditional survival probabilities. The Kaplan-Meier estimator of survival can also be explained using the redistribution to the right algorithm, which removes the mass of a censored subject and redistributes this mass equally to all subjects who fail or are censored at later times. This paper presents additional alternative representations of this estimator, as well as applications and advantages of its use. One of these representations consists in defining the estimator as a sum of weights, which is a convenient form to estimate several quantities in the context of multi-state models. The estimator can also be represented as a weighted average of identically distributed terms, where the weights are obtained by using the inverse probability of censoring. The paper discusses how these formulations can be used to estimate several quantities in the context of multi-state models. Two real data examples are included for illustration of the methods.

Supported by Portuguese Foundation for Science and Technology, references UIDB/00013/2020, UIDP/00013/2020 and EXPL/MAT-STA/0956/2021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lynden-Bell, D.: A method of allowing for known observational selection in small samples applied to 3CR quasars. Monthly Notices Royal Astron. Soc. 2, 95–118 (1971)

    Article  Google Scholar 

  3. Turnbull, B.W.: Nonparametric estimation of a survivorship function with doubly censored data. J. Am. Stat. Assoc. 69, 169–173 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aalen, O.O.: Nonparametric estimation of partial transition probabilities in multiple decrement models. Ann. Stat. 6, 534–545 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aalen, O.O., Johansen, S.: An empirical transition matrix for nonhomogeneous Markov chains based on censored observations. Scand. J. Stat. 5, 141–150 (1978)

    MATH  Google Scholar 

  6. Fleming, T.R.: Nonparametric estimation for nonhomogeneous Markov processes in the problem of competing risks. Ann. Stat. 6, 1057–1070 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Johansen, S.: The product limit estimator as maximum likelihood estimator. Scand. J. Stat. 5(4), 195–199 (1978)

    MathSciNet  MATH  Google Scholar 

  8. Feltz, C.J., Dykstra, R.L.: Maximum likelihood estimation of the survival functions of N stochastically ordered random variables. J. Am. Stat. Assoc. 80(392), 1012–1019 (1985)

    MathSciNet  MATH  Google Scholar 

  9. Borgan, Ø.: The Kaplan-Meier estimator. In: Armitage P, Colton T, eds. Encyclopedia of biostatistics, pp. 2154–2160. Wiley, Chichester (1998)

    Google Scholar 

  10. Satten, G.A., Datta, S.: The Kaplan-Meier estimator as an inverse-probability-of-censoring weighted average. Am. Stat. 55(3), 207–210 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rodríguez-Álvarez, M.J., Meira-Machado, L., Abu-Assi, E., Raposeiras-Roubín, S. (2016). Nonparametric estimation of time-dependent ROC curves conditional on a continuous covariate. Stat. Med. 35(7), 1090–1102 (2016)

    Google Scholar 

  12. Meira-Machado, L., de Uña-Álvarez, J., Datta, S.: Nonparametric estimation of conditional transition probabilities in a non-Markov illness-death model. Comput. Stat. 30, 377–397 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meira-Machado, L., Sestelo, M.: Estimation in the progressive illness-death model: a nonexhaustive review. Biom. J. 61(2), 245–263 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dikta, G.: On semiparametric random censorship models. J. Stat. Plann. Inf. 66, 253–279 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cao, R., López, de Ullibarri, I., Janssen, P., Veraverbeke, N.J.: Presmoothed Kaplan-Meier and Nelson-Aalen estimators: Nonparamet. Stat 17, 31–56 (2005)

    Google Scholar 

  16. Andersen, P.K., Borgan, O., Gill, R.D., Keiding, N.: Statistical Models Based on Counting Processes. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-4348-9

    Book  MATH  Google Scholar 

  17. Meira-Machado, L., de Uña-Álvarez, J., Cadarso-Suárez, C., Andersen, P.K.: Multi-state models for the analysis of time to event data. Stat. Methods Med. Res. 18, 195–222 (2009)

    Article  MathSciNet  Google Scholar 

  18. Borgan, Ø.: The Kaplan-Meier estimator. In: Armitage P, Colton T. (eds.) Encyclopedia of biostatistics, pp. 5–10. Wiley, Chichester (1998)

    Google Scholar 

  19. Moreira, A., de Uña-Álvarez, J., Meira-Machado, L.: Presmoothing the Aalen-Johansen estimator in the illness-death model. Electr. J. Stat. 7, 1491–1516 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Soutinho, G., Sestelo, M., Meira-Machado, L.: survidm: an R package for inference and prediction in an illness-death model. R J. 13(2), 70–89 (2021)

    Article  Google Scholar 

  21. Soutinho, G., Meira-Machado, L.: Methods for checking the Markov condition in multi-state survival data. Comput. Stati. 37(2), 751–780 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meira-Machado, L., de Uña-Álvarez, J., Cadarso-Suárez, C.: Nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Anal. 12, 325–344 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. de Uña-Álvarez, J., Meira-Machado, L.: Nonparametric estimation of transition probabilities in the non-Markov illness-death model: a comparative study. Biometrics 71, 141–150 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Putter, H., Spitoni, C.: Non-parametric estimation of transition probabilities in non-Markov multi-state models: the landmark Aalen-Johansen estimator. Stat. Methods Med. Res. 27(7), 2081–2092 (2018)

    Article  MathSciNet  Google Scholar 

  25. Datta, S., Satten, G.A.: Validity of the Aalen-Johansen estimators of stage occupation probabilities and Nelson-Aalen estimators of integrated transition hazards for non-Markov models. Statist. Probab. Lett. 55, 403–411 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Meira-Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meira-Machado, L. (2023). The Kaplan-Meier Estimator: New Insights and Applications in Multi-state Survival Analysis. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14112. Springer, Cham. https://doi.org/10.1007/978-3-031-37129-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37129-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37128-8

  • Online ISBN: 978-3-031-37129-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics