Skip to main content

A Family of Digital T Workflows and Architectures: Exploring Two Cases

  • Conference paper
  • First Online:
Innovative Intelligent Industrial Production and Logistics (IN4PL 2020, IN4PL 2021)

Abstract

Digital Models/Shadows/Twins/...have been given numerous definitions and descriptions in the literature. There is no consensus on terminology, nor a comprehensive description of workflows nor architectures. In this paper, we use the catch-all “Digital T” (pronounced “Digital Twinning”) to refer to all concepts, techniques, architectures, ...related to the “twinning” paradigm. In this paradigm, virtual instances, known as twins, of a System under Study (SuS) are continually updated with the SuS’s health, performance, and maintenance status, over its entire life-cycle. Digital T can be used for monitoring, analysis, optimization, and adaptation of complex engineered systems, in particular after these systems have been deployed. Digital T makes full use of both historical knowledge and of streaming data from sensors. Following Multi-Paradigm Modelling (MPM) principles, this paper proposes to explicitly model construction/use workflows as well as architectures and deployment of Digital T. Applying product family modelling allows for the de-/re-construction of the different Digital T variants in a principled, reproducible and partially automatable manner. Two small illustrative cases are discussed: a Line-Following Robot and an Incubator. These are representative for respectively an Automated Guided Vehicle and an Industrial Convection Oven, both important in an industrial context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors are grateful to Francis Bordeleau for pointing this out during Dagstuhl Seminar 22362 on Model Driven Engineering of Digital Twins.

References

  1. Aivaliotis, P., Georgoulias, K., Alexopoulos, K.: Using digital twin for maintenance applications in manufacturing: state of the art and gap analysis. In: 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), pp. 1–5. IEEE, Valbonne Sophia-Antipolis (2019). https://doi.org/10.1109/ICE.2019.8792613

  2. Amrani, M., Blouin, D., Heinrich, R., Rensink, A., Vangheluwe, H., Wortmann, A.: Multi-paradigm modelling for cyber–physical systems: a descriptive framework. Softw. Syst. Model. 20(3), 611–639 (2021). https://doi.org/10.1007/s10270-021-00876-z

    Article  Google Scholar 

  3. Bradac, Z., Marcon, P., Zezulka, F., Arm, J., Benesl, T.: Digital twin and AAS in the industry 4.0 framework. In: IOP Conference Series: Materials Science and Engineering, vol. 618, p. 012001 (2019). https://doi.org/10.1088/1757-899X/618/1/012001

  4. Cheng, Y., Zhang, Y., Ji, P., Xu, W., Zhou, Z., Tao, F.: Cyber-physical integration for moving digital factories forward towards smart manufacturing: a survey. Int. J. Adv. Manuf. Technol. 97(1–4), 1209–1221 (2018). https://doi.org/10.1007/s00170-018-2001-2

    Article  Google Scholar 

  5. Cimino, C., Negri, E., Fumagalli, L.: Review of digital twin applications in manufacturing. Comput. Ind. 113, 103130 (2019). https://doi.org/10.1016/j.compind.2019.103130

    Article  Google Scholar 

  6. Czarnecki, K.: Overview of generative software development. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 326–341. Springer, Heidelberg (2005). https://doi.org/10.1007/11527800_25

    Chapter  Google Scholar 

  7. Dalibor, M., et al.: A cross-domain systematic mapping study on software engineering for digital twins. J. Syst. Softw. 193, 111361 (2022). https://doi.org/10.1016/j.jss.2022.111361, https://www.sciencedirect.com/science/article/pii/S0164121222000917

  8. Feng, H., Gomes, C.A., Thule, C., Lausdahl, K., Iosifidis, A., Larsen, P.G.: Introduction to digital twin engineering. In: 2021 Annual Modeling and Simulation Conference (ANNSIM) (2021)

    Google Scholar 

  9. International Organization for Standardization (ISO/DIS): ISO 23247: Automation systems and integration—Digital Twin framework for manufacturing. Technical report (2020)

    Google Scholar 

  10. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960). https://doi.org/10.1115/1.3662552

    Article  MathSciNet  Google Scholar 

  11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain analysis (FODA) feasibility study. Carnegie-Mellon University, Technical report (1990)

    Google Scholar 

  12. Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W.: Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11), 1016–1022 (2018). https://doi.org/10.1016/j.ifacol.2018.08.474

    Article  Google Scholar 

  13. Kutin, A.A., Bushuev, V.V., Molodtsov, V.V.: Digital twins of mechatronic machine tools for modern manufacturing. In: IOP Conference Series: Materials Science and Engineering, vol. 568, p. 012070 (2019). https://doi.org/10.1088/1757-899X/568/1/012070

  14. Lin, W.D., Low, M.Y.H.: Concept and implementation of a cyber-physical digital twin for a SMT line. In: 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1455–1459 (2019). https://doi.org/10.1109/IEEM44572.2019.8978620

  15. Lu, Y., Liu, C., Wang, K.I.K., Huang, H., Xu, X.: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues. Rob. Comput.-Integr. Manuf. 61, 101837 (2020). https://doi.org/10.1016/j.rcim.2019.101837

    Article  Google Scholar 

  16. Madni, A.M., Madni, C.C., Lucero, S.D.: Leveraging digital twin technology in model-based systems engineering. Systems 7(1), 7 (2019)

    Article  Google Scholar 

  17. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 11, 939–948 (2017). https://doi.org/10.1016/j.promfg.2017.07.198

    Article  Google Scholar 

  18. Oakes, B.J., et al.: A digital twin description framework and its mapping to asset administration shell. arXiv preprint arXiv:2209.12661 (2022)

  19. Paredis, R., Exelmans, J., Vangheluwe, H.: Multi-paradigm modelling for model-based systems engineering: extending the FTG+PM. In: 2022 Annual Modeling and Simulation Conference (ANNSIM), SCS (2022)

    Google Scholar 

  20. Paredis., R., Gomes., C., Vangheluwe., H.: Towards a family of digital model/shadow/twin workflows and architectures. In: Proceedings of the 2nd International Conference on Innovative Intelligent Industrial Production and Logistics - IN4PL, pp. 174–182. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010717600003062

  21. Paredis, R., Vangheluwe, H.: Exploring a digital shadow design workflow by means of a line following robot use-case. In: 2021 Annual Modeling and Simulation Conference (ANNSIM) (2021)

    Google Scholar 

  22. Paredis, R., Vangheluwe, H.: Towards a digital Z framework based on a family of architectures and a virtual knowledge graph. In: Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems (MODELS) (2022)

    Google Scholar 

  23. Park, H., Easwaran, A., Andalam, S.: Challenges in digital twin development for cyber-physical production systems. In: Chamberlain, R., Taha, W., Törngren, M. (eds.) CyPhy/WESE -2018. LNCS, vol. 11615, pp. 28–48. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23703-5_2

    Chapter  Google Scholar 

  24. Qamar, A., Paredis, C.: Dependency modeling and model management in mechatronic design. In: Proceedings of the ASME Design Engineering Technical Conference, Chicago, IL, USA, vol. 2 (2012). https://doi.org/10.1115/DETC2012-70272

  25. Rajamani, R.: Vehicle Dynamics and Control. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4614-1433-9

    Book  MATH  Google Scholar 

  26. Rosen, R., von Wichert, G., Lo, G., Bettenhausen, K.D.: About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine 48(3), 567–572 (2015). https://doi.org/10.1016/j.ifacol.2015.06.141

    Article  Google Scholar 

  27. Rumpe, B.: Modelling for and of Digital Twins. Keynote (2021)

    Google Scholar 

  28. Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art. IEEE Trans. Ind. Inf. 15(4), 2405–2415 (2019). https://doi.org/10.1109/TII.2018.2873186

    Article  Google Scholar 

  29. de Weck, O.L., Roos, D., Magee, C.L., Vest, C.M.: Life-Cycle Properties of Engineering Systems: The Ilities, pp. 65–96. MIT Press, Cambridge (2011)

    Google Scholar 

  30. Zhang, H., Ma, L., Sun, J., Lin, H., Thürer, M.: Digital twin in services and industrial product service systems. Procedia CIRP 83, 57–60 (2019). https://doi.org/10.1016/j.procir.2019.02.131

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Flanders Make, the strategic research center for the Flemish manufacturing industry and by a doctoral fellowship of the Faculty of Science of the University of Antwerp. In addition, we are grateful to the Poul Due Jensen Foundation, which has supported the establishment of a new Center for Digital Twin Technology at Aarhus University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Vangheluwe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paredis, R., Gomes, C., Vangheluwe, H. (2023). A Family of Digital T Workflows and Architectures: Exploring Two Cases. In: Smirnov, A., Panetto, H., Madani, K. (eds) Innovative Intelligent Industrial Production and Logistics. IN4PL IN4PL 2020 2021. Communications in Computer and Information Science, vol 1855. Springer, Cham. https://doi.org/10.1007/978-3-031-37228-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37228-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37227-8

  • Online ISBN: 978-3-031-37228-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics