Skip to main content

Intelligent Roadside Infrastructure for Connected Mobility

  • Conference paper
  • First Online:
Smart Cities, Green Technologies, and Intelligent Transport Systems (SMARTGREENS 2022, VEHITS 2022)

Abstract

Intelligent roadside infrastructure units are crucial for connected mobility applications, smart traffic flow optimization, road condition monitoring, emergency vehicle routing during accidents or traffic jam situations, and for various autonomous driving use cases. Although significant achievements in the development of roadside infrastructure units have been accomplished in recent years, challenges still remain open. Advanced sensors, algorithms, and communication technology are required to design robust and reliable systems. To face these challenges, the work presented in this paper aims at developing an intelligent roadside infrastructure unit that can easily be adapted to various applications and locations. The unit is comprised of advanced sensors, i.e. camera, radar (Radio Detection and Ranging), and lidar (Light Detection and Ranging) sensors for efficient environment perception, and one V2X (Vehicle-to-Everything) communication module for sending the required information to nearby road users. A sensor data fusion module and communication technologies constitute the core of the intelligent roadside infrastructure unit. The development involves mechanical and electrical design as well as methods for the synchronization of multiple sensors and joint sensor calibration. Moreover, an auto-labelling framework for training data annotation and a multi-sensor monitoring framework is implemented. To test the work presented in this publication, a case study was conducted. Preliminary tests at a pedestrian crossing junction show that the intelligent roadside unit can successfully be applied for smart traffic light control.

S. Agrawal and R. Song—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SAE levels of driving automation homepage. https://www.sae.org/blog/sae-j3016-update. Accessed 3 Oct 2022

  2. Agrawal, S., Elger, G.: Concept of infrastructure based environment perception for IN2Lab test field for automated driving. In: 2021 IEEE International Smart Cities Conference (ISC2), pp. 1–4. IEEE (2021)

    Google Scholar 

  3. Agrawal, S., et al.: Concept of smart infrastructure for connected vehicle assist and traffic flow optimization. In: VEHITS, pp. 360–367 (2022)

    Google Scholar 

  4. Chadwick, S., Maddern, W., Newman, P.: Distant vehicle detection using radar and vision. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8311–8317. IEEE (2019)

    Google Scholar 

  5. Chang, S., et al.: Spatial attention fusion for obstacle detection using mmwave radar and vision sensor. Sensors 20(4), 956 (2020)

    Article  Google Scholar 

  6. Creß, C., et al.: A9-dataset: multi-sensor infrastructure-based dataset for mobility research. In: 2022 IEEE Intelligent Vehicles Symposium (IV), pp. 965–970. IEEE (2022)

    Google Scholar 

  7. Fayad, F., Cherfaoui, V.: Object-level fusion and confidence management in a multi-sensor pedestrian tracking system. In: 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 58–63. IEEE (2008)

    Google Scholar 

  8. Festag, A., Udupa, S., Garcia, L., Wellens, R., Hecht, M., Ulfig, P.: End-to-end performance measurements of drone communications in 5G cellular networks. In: 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), pp. 1–6 (2021). https://doi.org/10.1109/VTC2021-Fall52928.2021.9625429

  9. Floudas, N., Polychronopoulos, A., Aycard, O., Burlet, J., Ahrholdt, M.: High level sensor data fusion approaches for object recognition in road environment. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 136–141. IEEE (2007)

    Google Scholar 

  10. Frey, M.: Challenges in real traffic-test area autonomous driving baden-württemberg. In: Automated Mobility Conference-Changing the Game of Urban Mobility, Brüssel, Belgien (2019)

    Google Scholar 

  11. Gao, D., Duan, J., Yang, X., Zheng, B.: A method of spatial calibration for camera and radar. In: 2010 8th World Congress on Intelligent Control and Automation, pp. 6211–6215. IEEE (2010)

    Google Scholar 

  12. Gu, S., Chen, G., Zhang, L., Hou, J., Hu, Y., Knoll, A.: Constrained reinforcement learning for vehicle motion planning with topological reachability analysis. Robotics 11(4), 81 (2022)

    Article  Google Scholar 

  13. Gu, S., et al.: A review of safe reinforcement learning: Methods, theory and applications. arXiv preprint arXiv:2205.10330 (2022)

  14. Hegde, A., Festag, A.: Artery-C: an OMNeT++ based discrete event simulation framework for cellular V2X. In: MSWiM 2020, pp. 47–51. Association for Computing Machinery (2020). https://doi.org/10.1145/3416010.3423240

  15. Commsignia Inc.: Commsignia ITS-RS4 V2X enabled road side unit datasheet (2022). https://www.commsignia.com/wp-content/uploads/2020/11/Commsignia_ITS_RS4_ProductBrief_v.10.1_22052020_web.pdf

  16. Ouster Inc.: Ouster OS1 lidar sensor datasheet (2022). https://data.ouster.io/downloads/datasheets/datasheet-rev06-v2p4-os1.pdf

  17. John, V., Mita, S.: Deep feature-level sensor fusion using skip connections for real-time object detection in autonomous driving. Electronics 10(4), 424 (2021)

    Article  Google Scholar 

  18. Krämmer, A., Schöller, C., Gulati, D., Knoll, A.: Providentia-a large scale sensing system for the assistance of autonomous vehicles. In: Robotics: Science and Systems (RSS), Workshop on Scene and Situation Understanding for Autonomous Driving (2019)

    Google Scholar 

  19. Köhler, A.L., Koch, I., Ladwig, S.: Guiding drivers towards safer driving speed: exploiting visual dominance in speed adaptation. Transp. Res. Part F: Traffic Psychol. Behav. 90, 438–450 (2022). https://doi.org/10.1016/j.trf.2022.09.011. https://www.sciencedirect.com/science/article/pii/S136984782200208X

  20. Liu, X., Cai, Z.: Advanced obstacles detection and tracking by fusing millimeter wave radar and image sensor data. In: ICCAS 2010, pp. 1115–1120. IEEE (2010)

    Google Scholar 

  21. Maksimovski, D., Facchi, C., Festag, A.: Cooperative driving: research on generic decentralized maneuver coordination for connected and automated vehicles. In: Klein, C., Jarke, M., Helfert, M., Berns, K., Gusikhin, O. (eds.) Smart Cities, Green Technologies, and Intelligent Transport Systems. VEHITS SMARTGREENS 2021. CCIS, vol. 1612, pp. 348–370. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17098-0_18

  22. Mazokha, S., Bao, F., Sklivanitis, G., Hallstrom, J.O.: Urban-scale testbed infrastructure for data-driven wireless research. In: 2021 IEEE 4th 5G World Forum (5GWF), pp. 517–522. IEEE (2021)

    Google Scholar 

  23. Nobis, F., Geisslinger, M., Weber, M., Betz, J., Lienkamp, M.: A deep learning-based radar and camera sensor fusion architecture for object detection. In: 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF), pp. 1–7. IEEE (2019)

    Google Scholar 

  24. von Schmidt, A., López Díaz, M., Schengen, A.: Creating a baseline scenario for simulating travel demand: a case study for preparing the region test bed lower Saxony, Germany. In: International Conference on Advances in System Simulation (SIMUL), pp. 51–57. ThinkMind (2021)

    Google Scholar 

  25. Continental Engineering Services: ARS548 RDI 3D/4D long range radar datasheet (2022). https://conti-engineering.com/wp-content/uploads/2020/02/RadarSensors_ARS548RDI.pdf

  26. Song, R., Festag, A.: Analysis of existing approaches for information sharing in cooperative intelligent transport systems - V2X messaging and sensoris. In: 38th FISITA World Congress (2021). https://doi.org/10.46720/F2020-ACM-012

  27. Song, R., Hegde, A., Senel, N., Knoll, A., Festag, A.: Edge-aided sensor data sharing in vehicular communication networks. In: 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), pp. 1–7 (2022). https://doi.org/10.1109/VTC2022-Spring54318.2022.9860849

  28. Song, R., et al.: Federated learning via decentralized dataset distillation in resource-constrained edge environments. arXiv preprint arXiv:2208.11311 (2022)

  29. Song, R., Zhou, L., Lakshminarasimhan, V., Festag, A., Knoll, A.: Federated learning framework coping with hierarchical heterogeneity in cooperative its. In: 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), pp. 3502–3508 (2022). https://doi.org/10.1109/ITSC55140.2022.9922064

  30. IDS UI-5260CP-C-HQ rev.2 camera datasheet (2022). https://de.ids-imaging.com/IDS/datasheet_pdf.php?sku=AB00820

  31. Tamron: Tamron M112FM08 lens datasheet (2022). https://www.tamron.vision/wp-content/uploads/2019/11/M112FM08_engl1.pdf

  32. Tran, T.V., Sartipi, M.: Neuroevolution for transportation applications (2022)

    Google Scholar 

  33. Wei, Z., Zhang, F., Chang, S., Liu, Y., Wu, H., Feng, Z.: Mmwave radar and vision fusion for object detection in autonomous driving: a review. Sensors 22(7), 2542 (2022)

    Article  Google Scholar 

  34. Wiedemann, T., Vlaicu, C., Josifovski, J., Viseras, A.: Robotic information gathering with reinforcement learning assisted by domain knowledge: an application to gas source localization. IEEE Access 9, 13159–13172 (2021). https://doi.org/10.1109/ACCESS.2021.3052024

    Article  Google Scholar 

  35. Xu, R., Tu, Z., Xiang, H., Shao, W., Zhou, B., Ma, J.: Cobevt: cooperative bird’s eye view semantic segmentation with sparse transformers. arXiv preprint arXiv:2207.02202 (2022)

  36. Xu, R., Xiang, H., Tu, Z., Xia, X., Yang, M.H., Ma, J.: V2X-ViT: vehicle-to-everything cooperative perception with vision transformer. arXiv preprint arXiv:2203.10638 (2022)

  37. Xu, R., Xiang, H., Xia, X., Han, X., Li, J., Ma, J.: OPV2V: an open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 2583–2589. IEEE (2022)

    Google Scholar 

  38. Zhou, Y., Dong, Y., Hou, F., Wu, J.: Review on millimeter-wave radar and camera fusion technology. Sustainability 14(9), 5114 (2022)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Bavarian Ministry of Economic Affairs, Regional Development and Energy (StMWi) in the project “InFra Intelligent - Infrastructure”. We would also like to thank Continental for providing the 3D automotive radar sensor for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agrawal, S., Song, R., Doycheva, K., Knoll, A., Elger, G. (2023). Intelligent Roadside Infrastructure for Connected Mobility. In: Klein, C., Jarke, M., Ploeg, J., Helfert, M., Berns, K., Gusikhin, O. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. SMARTGREENS VEHITS 2022 2022. Communications in Computer and Information Science, vol 1843. Springer, Cham. https://doi.org/10.1007/978-3-031-37470-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37470-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37469-2

  • Online ISBN: 978-3-031-37470-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics