Skip to main content

Multi-task Neural Networks for Pain Intensity Estimation Using Electrocardiogram and Demographic Factors

  • Conference paper
  • First Online:
Information and Communication Technologies for Ageing Well and e-Health (ICT4AWE 2021, ICT4AWE 2022)

Abstract

Pain is a complex phenomenon which is manifested and expressed by patients in various forms. The immediate and objective recognition of it is a great of importance in order to attain a reliable and unbiased healthcare system. In this work, we elaborate electrocardiography signals revealing the existence of variations in pain perception among different demographic groups. We exploit this insight by introducing a novel multi-task neural network for automatic pain estimation utilizing the age and the gender information of each individual, and show its advantages compared to other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amirian, M., Kächele, M., Schwenker, F.: Using radial basis function neural networks for continuous and discrete pain estimation from bio-physiological signals. In: Schwenker, F., Abbas, H.M., El Gayar, N., Trentin, E. (eds.) ANNPR 2016. LNCS (LNAI), vol. 9896, pp. 269–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46182-3_23

    Chapter  Google Scholar 

  2. Bartley, E.J., Fillingim, R.B.: Sex differences in pain: a brief review of clinical and experimental findings. Br. J. Anaesth. 111(1), 52–58 (2013). https://doi.org/10.1093/bja/aet127, https://pubmed.ncbi.nlm.nih.gov/23794645, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690315/

  3. de C Williams, A.C., Craig, K.D.: Updating the definition of pain. Pain 157, 2420–2423 (2016). https://doi.org/10.1097/j.pain.0000000000000613

  4. Cipolla, R., Gal, Y., Kendall, A.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018). https://doi.org/10.1109/CVPR.2018.00781

  5. Cordell, W.H., Keene, K.K., Giles, B.K., Jones, J.B., Jones, J.H., Brizendine, E.J.: The high prevalence of pain in emergency medical care. Am. J. Emerg. Med. 20, 165–169 (2002). https://doi.org/10.1053/ajem.2002.32643

    Article  Google Scholar 

  6. Dinakar, P., Stillman, A.M.: Pathogenesis of pain. Semin. Pediatr. Neurol. 23, 201–208 (2016). https://doi.org/10.1016/J.SPEN.2016.10.003

  7. Fariha, M.A.Z., Ikeura, R., Hayakawa, S., Tsutsumi, S.: Analysis of pan-tompkins algorithm performance with noisy ECG signals. J. Phys. Conf. Ser. 1532, 12022 (2020). https://doi.org/10.1088/1742-6596/1532/1/012022

    Article  Google Scholar 

  8. Gkikas., S., Chatzaki., C., Pavlidou., E., Verigou., F., Kalkanis., K., Tsiknakis., M.: Automatic pain intensity estimation based on electrocardiogram and demographic factors, pp. 155–162. SciTePress (2022). https://doi.org/10.5220/0010971700003188

  9. Hadjistavropoulos, T., Craig, K.D.: A theoretical framework for understanding self-report and observational measures of pain: a communications model. Behav. Res. Therapy 40, 551–570 (2002). https://doi.org/10.1016/S0005-7967(01)00072-9

  10. Hinduja, S., Canavan, S., Kaur, G.: Multimodal fusion of physiological signals and facial action units for pain recognition, pp. 577–581. Institute of Electrical and Electronics Engineers Inc. (2020). https://doi.org/10.1109/FG47880.2020.00060

  11. Huang, D., et al.: Spatio-temporal pain estimation network with measuring pseudo heart rate gain. IEEE Trans. Multimed. 24, 3300–3313 (2022). https://doi.org/10.1109/TMM.2021.3096080

    Article  Google Scholar 

  12. Kächele, M., Thiam, P., Amirian, M., Schwenker, F., Palm, G.: Methods for person-centered continuous pain intensity assessment from bio-physiological channels. IEEE J. Sel. Top. Signal Process. 10, 854–864 (2016). https://doi.org/10.1109/JSTSP.2016.2535962

  13. Lopez-Martinez, D., Picard, R.: Multi-task neural networks for personalized pain recognition from physiological signals, vol. 2018-Janua, pp. 181–184. Institute of Electrical and Electronics Engineers Inc., January 2017. https://doi.org/10.1109/ACIIW.2017.8272611

  14. Lopez-Martinez, D., Picard, R.: Continuous pain intensity estimation from autonomic signals with recurrent neural networks, vol. 2018, pp. 5624–5627 (2018). https://doi.org/10.1109/EMBC.2018.8513575

  15. Lopez-Martinez, D., Rudovic, O., Picard, R.: Physiological and behavioral profiling for nociceptive pain estimation using personalized multitask learning. In: Neural Information Processing Systems (NIPS) Workshop on Machine Learning for Health. Long Beach, USA (2017)

    Google Scholar 

  16. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME-32, 230–236 (1985). https://doi.org/10.1109/TBME.1985.325532

  17. 3rd Riley, J.L., Robinson, M.E., Wise, E.A., Myers, C.D., Fillingim, R.B.: Sex differences in the perception of noxious experimental stimuli: a meta-analysis. Pain 74, 181–187 (1998). https://doi.org/10.1016/s0304-3959(97)00199-1

  18. Rohling, M.L., Binder, L.M., Langhinrichsen-Rohling, J.: Money matters: a meta-analytic review of the association between financial compensation and the experience and treatment of chronic pain. Health Psychol. 14, 537–547 (1995). https://doi.org/10.1037/0278-6133.14.6.537

    Article  Google Scholar 

  19. Khalid, S., Tubbs, R.S.: Neuroanatomy and neuropsychology of pain. Cureus 9 (2017). https://doi.org/10.7759/CUREUS.1754

  20. Stewart, G., Panickar, A.: Role of the sympathetic nervous system in pain, December 2013. https://doi.org/10.1016/j.mpaic.2013.09.003

  21. Subramaniam, S.D., Dass, B.: Automated nociceptive pain assessment using physiological signals and a hybrid deep learning network. IEEE Sens. J. 21, 3335–3343 (2021). https://doi.org/10.1109/JSEN.2020.3023656

    Article  Google Scholar 

  22. Thiam, P., Bellmann, P., Kestler, H.A., Schwenker, F.: Exploring deep physiological models for nociceptive pain recognition. Sensors 19, 4503 (2019). https://doi.org/10.3390/s19204503

  23. Turk, D.C., Melzack, R.: The measurement of pain and the assessment of people experiencing pain, pp. 3–16 (2011). https://psycnet.apa.org/record/2011-03491-001

  24. Walter, S., et al.: The biovid heat pain database: data for the advancement and systematic validation of an automated pain recognition, pp. 128–131 (2013). https://doi.org/10.1109/CYBConf.2013.6617456

  25. Wang, J., et al.: An autoencoder-based approach to predict subjective pain perception from high-density evoked EEG potentials, vol. 2020-July, pp. 1507–1511. Institute of Electrical and Electronics Engineers Inc. (2020). https://doi.org/10.1109/EMBC44109.2020.9176644

  26. Werner, P., Al-Hamadi, A., Niese, R., Walter, S., Gruss, S., Traue, H.C.: Automatic pain recognition from video and biomedical signals, pp. 4582–4587. Institute of Electrical and Electronics Engineers Inc. (2014). https://doi.org/10.1109/ICPR.2014.784

  27. Yu, M., et al.: Diverse frequency band-based convolutional neural networks for tonic cold pain assessment using EEG. Neurocomputing 378, 270–282 (2020). https://doi.org/10.1016/j.neucom.2019.10.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanos Gkikas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gkikas, S., Chatzaki, C., Tsiknakis, M. (2023). Multi-task Neural Networks for Pain Intensity Estimation Using Electrocardiogram and Demographic Factors. In: Maciaszek, L.A., Mulvenna, M.D., Ziefle, M. (eds) Information and Communication Technologies for Ageing Well and e-Health. ICT4AWE ICT4AWE 2021 2022. Communications in Computer and Information Science, vol 1856. Springer, Cham. https://doi.org/10.1007/978-3-031-37496-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37496-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37495-1

  • Online ISBN: 978-3-031-37496-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics