Skip to main content

An Autoencoder-Based Image Anonymization Scheme for Privacy Enhanced Deep Learning

  • Conference paper
  • First Online:
Data and Applications Security and Privacy XXXVII (DBSec 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13942))

Included in the following conference series:

  • 546 Accesses

Abstract

The development of deep learning (DL) technology is dependent on the availability of large-scale image datasets to train deep neural networks (DNNs) for image classification. However, many raw image datasets contain sensitive identity feature information that prohibit entities from disclosing data due to privacy regulations. For example, an image dataset may include age or gender information that could be used to identify an individual. Furthermore, medical images may include additional disease information that could lead to patient re-identification. To address this problem, we propose an image transformation scheme using a convolutional autoencoder and multi-output classification model for privacy enhanced deep learning. The proposed scheme obfuscates image visual information while retaining useful attribute features that are required for model utility. Additionally, the proposed method enhances privacy by generating encoded images that exclude sensitive identity feature information. First, we train a multi-output convolutional neural network (CNN) to classify identity features and image attributes. Second, we use the pre-trained multi-output classifier for regularization in training a standard convolutional autoencoder to generate obfuscated versions of the original images that exclude identity feature information and preserve attribute features that are useful for classification. Our results on CelebA and Cifar-100 datasets illustrate that the proposed method successfully degrades classification accuracy of sensitive image data while maintaining model utility for non-sensitive data features.

Research supported in part by NSF CREST Grant HRD-1736209 (RK) and NSF CAREER Grant CNS-1553696 (RK).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atallah, M.J., Pantazopoulos, K.N., Rice, J.R., Spafford, E.E.: Secure outsourcing of scientific computations. Adv. Comput. 54, 215–272 (2002)

    Article  Google Scholar 

  2. Yuan, X., Wang, X., Wang, C., Squicciarini, A., Ren, K.: Enabling privacy-preserving image-centric social discovery. In: Proceedings of the 2014 IEEE 34th International Conference on Distributed Computing Systems, ser. ICDCS ’14. USA: IEEE Computer Society, pp. 198–207 (2014). https://doi.org/10.1109/ICDCS.2014.28

  3. Wu, Z., Huang, Y., Wang, L., Wang, X., Tan, T.: A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 209–226 (2016)

    Article  Google Scholar 

  4. Packhäuser, K., Gündel, S., Münster, N., Syben, C., Christlein, V., Maier, A.: Is medical chest x-ray data anonymous? arXiv preprint arXiv:2103.08562 (2021)

  5. McPherson, R., Shokri, R., Shmatikov, V.: Defeating image obfuscation with deep learning. arXiv preprint arXiv:1609.00408 (2016)

  6. Tanaka, M.: Learnable image encryption. In: 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 1–2 (2018)

    Google Scholar 

  7. Sirichotedumrong, W., Maekawa, T., Kinoshita, Y., Kiya, H.: Privacy-preserving deep neural networks with pixel-based image encryption considering data augmentation in the encrypted domain. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 674–678 (2019)

    Google Scholar 

  8. Sirichotedumrong, W., Kinoshita, Y., Kiya, H.: Pixel-based image encryption without key management for privacy-preserving deep neural networks. IEEE Access 7, 177:844–177:855 (2019)

    Google Scholar 

  9. Sirichotedumrong, W., Kiya, H.: A gan-based image transformation scheme for privacy-preserving deep neural networks (2020). https://arxiv.org/abs/2006.01342

  10. Chen, Z., Zhu, T., Xiong, P., Wang, C., Ren, W.: Privacy preservation for image data: a Gan-based method. Int. J. Intell. Syst. 36(4), 1668–1685 (2021)

    Article  Google Scholar 

  11. Rastogi, V., Suciu, D., Hong, S.: The boundary between privacy and utility in data publishing. In: Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 531–542 (2007)

    Google Scholar 

  12. Li, T., Li, N.: On the tradeoff between privacy and utility in data publishing. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 517–526 (2009)

    Google Scholar 

  13. Yonghao, G., Weiming, W.: A quantifying method for trade-off between privacy and utility. In: IET International Conference on Information and Communications Technologies (IETICT 2013). IET, pp. 270–273 (2013)

    Google Scholar 

  14. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  15. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  16. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), pp. 160–164. IEEE (1982)

    Google Scholar 

  17. Chase, M., Gilad-Bachrach, R., Laine, K., Lauter, K., Rindal, P.: Private collaborative neural network learning. Cryptology ePrint Archive (2017)

    Google Scholar 

  18. Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38 (2017)

    Google Scholar 

  19. Wagh, S., Gupta, D., Chandran, N.: Securenn: 3-party secure computation for neural network training. Proc. Priv. Enhancing Technol. 2019(3), 26–49 (2019)

    Article  Google Scholar 

  20. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Symposium on Security and Privacy, pp. 334–348 (2013)

    Google Scholar 

  21. Aono, Y., Hayashi, T., Trieu Phong, L., Wang, L.: Scalable and secure logistic regression via homomorphic encryption. In: Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, pp. 142–144 (2016)

    Google Scholar 

  22. Bonte, C., Vercauteren, F.: Privacy-preserving logistic regression training. BMC Med. Genomics 11(4), 13–21 (2018)

    Google Scholar 

  23. Crawford, J.L.H., Gentry, C., Halevi, S., Platt, D., Shoup, V.: Doing real work with FHE: the case of logistic regression. Cryptology ePrint Archive, Paper 2018/202 (2018). https://eprint.iacr.org/2018/202

  24. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 1–21. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5_1

    Chapter  Google Scholar 

  25. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X., et al.: Secure logistic regression based on homomorphic encryption: design and evaluation. JMIR Med. Informat. 6(2), e8805 (2018)

    Article  Google Scholar 

  26. Nandakumar, K., Ratha, N., Pankanti, S., Halevi, S.: Towards deep neural network training on encrypted data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  27. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Sig. Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  28. Bonawitz, K., et al.: Towards federated learning at scale: system design. Proc. Mach. Learn. Syst. 1, 374–388 (2019)

    Google Scholar 

  29. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-iid data. arXiv preprint arXiv:1806.00582 (2018)

  30. Konečný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency (2016). https://arxiv.org/abs/1610.05492

  31. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), pp. 1–210 (2021)

    Google Scholar 

  32. Huang, Y., Song, Z., Li, K., Arora, S.: InstaHide: instance-hiding schemes for private distributed learning. In: Proceedings of the 37th International Conference on Machine Learning, Ser. Proceedings of Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul, pp. 4507–4518 (2020). https://proceedings.mlr.press/v119/huang20i.html

  33. Yala, A., et al.: Neuracrypt: hiding private health data via random neural networks for public training (2021). https://arxiv.org/abs/2106.02484

  34. Carlini, N., et al.: Is private learning possible with instance encoding? (2020). https://arxiv.org/abs/2011.05315

  35. Raynal, M., Achanta, R., Humbert, M.: Image obfuscation for privacy-preserving machine learning (2020). https://arxiv.org/abs/2010.10139

  36. Malekzadeh, M., Clegg, R.G., Cavallaro, A., Haddadi, H.: Mobile sensor data anonymization. In: Proceedings of the International Conference on Internet of Things Design and Implementation, pp. 49–58 (2019)

    Google Scholar 

  37. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). https://arxiv.org/abs/1512.03385

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Rodriguez or Ram Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodriguez, D., Krishnan, R. (2023). An Autoencoder-Based Image Anonymization Scheme for Privacy Enhanced Deep Learning. In: Atluri, V., Ferrara, A.L. (eds) Data and Applications Security and Privacy XXXVII. DBSec 2023. Lecture Notes in Computer Science, vol 13942. Springer, Cham. https://doi.org/10.1007/978-3-031-37586-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37586-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37585-9

  • Online ISBN: 978-3-031-37586-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics