Skip to main content

Abstract

This paper describes and evaluates the use of Jason BDI agents to make the high-level control and the coordination of a swarm of autonomous unmanned aerial vehicles (UAVs). The UAVs in the swarm work together searching and extinguishing fire spots in a simulated forest firefighting scenario. This problem was presented by the 2022 SARC–BARINET aerospace competition, which makes use of the ROS/Gazebo simulation environment. ROS is also used here to perform the low-level UAV’s control. Our solution requires a minimum of 2 UAVs and can be easily scaled. We were able to successfully complete the given mission using up to 8 UAVs. Additional experiments devoted for performance-data collection were conducted using swarms with 4, 6, and 8 UAVs. Obtained results are presented and discussed along the paper.

This work was partially supported by the Brazilian funding agencies FAPESC, CAPES, and CNPq. Part of Leandro Buss Becker’s work, while at Manchester, was supported by The Royal Academy of Engineering through its Chair in Emerging Technologies scheme. Jomi Hübner was supported by CNPq, grant 402711/2022-0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://sarc.center/sarc-barinet-aerospace-competition.

  2. 2.

    https://www.ros.org/.

  3. 3.

    http://jason.sf.net.

  4. 4.

    http://github.com/embedded-mas/embedded-mas.

  5. 5.

    http://wiki.ros.org/rosbridge_suite.

  6. 6.

    https://github.com/ctu-mrs/mrs_uav_system.

  7. 7.

    The full agent code is available for download at https://github.com/iagosilvestre/start-UFSC.

  8. 8.

    https://www.youtube.com/channel/UCuMtLsiR-Amuw9AizYQLCnw.

References

  1. Boissier, O., Bordini, R.H., Hübner, J., Ricci, A.: Multi-agent Oriented Programming: Programming Multi-Agent Systems Using JaCaMo. MIT Press, Cambridge (2020). https://mitpress.mit.edu/books/multi-agent-oriented-programming

  2. Bordini, R.H., Hübner, J.F., Wooldrige, M.: Programming Multi-Agent Systems in AgentSpeak using Jason. Wiley Series in Agent Technology, Wiley, Hoboken (2007). https://doi.org/10.1002/9780470061848, http://jason.sf.net/jBook

  3. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning. Comput. Intell. 4, 349–355 (1988). https://doi.org/10.1111/j.1467-8640.1988.tb00284.x

    Article  Google Scholar 

  4. Cardoso, R.C., Ferrando, A., Dennis, L.A., Fisher, M.: An interface for programming verifiable autonomous agents in ROS. In: Bassiliades, N., Chalkiadakis, G., de Jonge, D. (eds.) Multi-Agent Systems and Agreement Technologies. LNCS, pp. 191–205. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-66412-1_13

    Chapter  Google Scholar 

  5. Dennis, L.A., Fisher, M.: Verifiable Autonomous Systems: Using Rational Agents to Provide Assurance about Decisions Made by Machines. Cambridge University Press, Cambridge (2023)

    Book  Google Scholar 

  6. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2149–2154 (2004). https://doi.org/10.1109/IROS.2004.1389727

  7. Koubaa, A.: Robot Operating System (ROS): The Complete Reference, vol. 2, 1st edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54927-9

    Book  Google Scholar 

  8. Menegol, M.S., Hübner, J.F., Becker, L.B.: Evaluation of multi-agent coordination on embedded systems. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.) PAAMS 2018. LNCS (LNAI), vol. 10978, pp. 212–223. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94580-4_17

    Chapter  Google Scholar 

  9. Moro, D.D., Robol, M., Roveri, M., Giorgini, P.: Developing BDI-based robotic systems with ROS2. In: Dignum, F., Mathieu, P., Corchado, J.M., de la Prieta, F. (eds.) PAAMS 2022. LNCS, vol. 13616, pp. 100–111. Springer, Cham (2022)

    Chapter  Google Scholar 

  10. Müller, M., Müller, T., Talkhestani, B.A., Marks, P., Jazdi, N., Weyrich, M.: Industrial autonomous systems: a survey on definitions, characteristics and abilities. Automatisierungstechnik 69(1), 3–13 (2021). https://doi.org/10.1515/auto-2020-0131

  11. Onyedinma, C., Gavigan, P., Esfandiari, B.: Toward campus mail delivery using BDI. J. Sens. Actuator Netw. 9(4), 56 (2020). https://doi.org/10.3390/jsan9040056

    Article  Google Scholar 

  12. Polydoros, A.S., Großmann, B., Rovida, F., Nalpantidis, L., Krüger, V.: Accurate and versatile automation of industrial kitting operations with SkiROS. In: Alboul, L., Damian, D., Aitken, J.M. (eds.) TAROS 2016. LNCS, pp. 255–268. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40379-3_26

    Chapter  Google Scholar 

  13. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

    Chapter  Google Scholar 

  14. Silva, G.R., Becker, L.B., Hübner, J.F.: Embedded architecture composed of cognitive agents and ROS for programming intelligent robots. IFAC-PapersOnLine 53(2), 10000–10005 (2020). 21st IFAC World Congress

    Google Scholar 

  15. Silva, G.R., Hübner, J.F., Becker, L.B.: Active perception within bdi agents reasoning cycle. In: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1218–1225. AAMAS 2021, International Foundation for Autonomous Agents and Multiagent Systems, Richland (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Buss Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silvestre, I., de Lima, B., Dias, P.H., Buss Becker, L., Hübner, J.F., de Brito, M. (2023). UAV Swarm Control and Coordination Using Jason BDI Agents on Top of ROS. In: Mathieu, P., Dignum, F., Novais, P., De la Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Collection. PAAMS 2023. Lecture Notes in Computer Science(), vol 13955. Springer, Cham. https://doi.org/10.1007/978-3-031-37616-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37616-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37615-3

  • Online ISBN: 978-3-031-37616-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics