Skip to main content

Region-Based Trajectory Analysis for Abnormal Behaviour Detection: A Trial Study for Suicide Detection and Prevention

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Abstract

We propose a region-based trajectory analysis method to detect abnormal activities in a scene. It provides a self-adapted, location-sensitive and interpretable trajectory analysis method for different scenarios. Our integrated pipeline consists of a pedestrian detection and tracking module to extract density, speed and direction features. In addition, it contains a grid-based feature extraction and clustering module that automatically generates a region map with corresponding feature importance. During testing, the pipeline analyses the segments that fall into the regions, but do not comply with the important features, and clusters trajectories together to detect abnormal behaviours. Our case study of a suicide hotspot proves the effectiveness of such an approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, J.K., Xia, L.: Human activity recognition from 3D data: a review. Pattern Recogn. Lett. 48, 70–80 (2014)

    Article  Google Scholar 

  2. Ahmed, S.A., Dogra, D.P., Kar, S., Roy, P.P.: Trajectory-based surveillance analysis: a survey. IEEE Trans. Circuits Syst. Video Technol. 29(7), 1985–1997 (2018)

    Article  Google Scholar 

  3. Alghofaili, Y.: kmeans feature importance. https://github.com/YousefGh/kmeans-feature-importance (2021)

  4. Bouachir, W., Noumeir, R.: Automated video surveillance for preventing suicide attempts. In: 7th International Conference on Imaging for Crime Detection and Prevention (ICDP 2016), pp. 1–6. IET (2016)

    Google Scholar 

  5. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 93–104 (2000)

    Google Scholar 

  6. Cai, Y., Wang, H., Chen, X., Jiang, H.: Trajectory-based anomalous behaviour detection for intelligent traffic surveillance. IET Intel. Transport Syst. 9(8), 810–816 (2015)

    Article  Google Scholar 

  7. Coşar, S., Donatiello, G., Bogorny, V., Garate, C., Alvares, L.O., Brémond, F.: Toward abnormal trajectory and event detection in video surveillance. IEEE Trans. Circuits Syst. Video Technol. 27(3), 683–695 (2016)

    Article  Google Scholar 

  8. Deori, B., Thounaojam, D.M.: A survey on moving object tracking in video. Int. J. Inf. Theory (IJIT) 3(3), 31–46 (2014)

    Google Scholar 

  9. Hoeferlin, M., Hoeferlin, B., Heidemann, G., Weiskopf, D.: Interactive schematic summaries for faceted exploration of surveillance video. IEEE Trans. Multimedia 15(4), 908–920 (2013)

    Article  Google Scholar 

  10. Ismaili, O.A., Lemaire, V., Cornuéjols, A.: A supervised methodology to measure the variables contribution to a clustering. In: Loo, C.K., Yap, K.S., Wong, K.W., Teoh, A., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8834, pp. 159–166. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12637-1_20

    Chapter  Google Scholar 

  11. Jiang, F., Wu, Y., Katsaggelos, A.K.: A dynamic hierarchical clustering method for trajectory-based unusual video event detection. IEEE Trans. Image Process. 18(4), 907–913 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event recognition. Image Vis. Comput. 14(8), 609–615 (1996)

    Article  Google Scholar 

  13. Kumar, D., Bezdek, J.C., Rajasegarar, S., Leckie, C., Palaniswami, M.: A visual-numeric approach to clustering and anomaly detection for trajectory data. Vis. Comput. 33(3), 265–281 (2017)

    Article  Google Scholar 

  14. Lee, J., Lee, C.-M., Park, N.-K.: Application of sensor network system to prevent suicide from the bridge. Multimedia Tools Appl. 75(22), 14557–14568 (2015). https://doi.org/10.1007/s11042-015-3134-z

    Article  Google Scholar 

  15. Lee, S., et al.: Detection of a suicide by hanging based on a 3-D image analysis. IEEE-Inst Electr. Electron. Eng. Inc 14(9), 2934–2935 (2014). https://doi.org/10.1109/JSEN.2014.2332070. http://hdl.handle.net/10203/199171

  16. Li, T., Sun, Z., Chen, X.: Group-skeleton-based human action recognition in complex events. In: Proceedings of the 28th ACM International Conference on Multimedia (2020). https://doi.org/10.1145/3394171.3416280

  17. Li, X., Onie, S., Liang, M., Larsen, M., Sowmya, A.: Towards building a visual behaviour analysis pipeline for suicide detection and prevention. Sensors 22(12), 4488 (2022)

    Article  Google Scholar 

  18. Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering validation measures. In: 2010 IEEE International Conference on Data Mining, pp. 911–916. IEEE (2010)

    Google Scholar 

  19. Mackenzie, J.M., et al.: Behaviours preceding suicides at railway and underground locations: a multimethodological qualitative approach. BMJ Open 8(4), e021076 (2018)

    Article  Google Scholar 

  20. Mileva, M., Burton, A.M.: Face search in CCTV surveillance. Cognitive Res. Principles Implicat. 4(1), 1–21 (2019)

    Article  Google Scholar 

  21. Mishara, B.L., Bardon, C., Dupont, S.: Can CCTV identify people in public transit stations who are at risk of attempting suicide? an analysis of CCTV video recordings of attempters and a comparative investigation. BMC Pub. Health 16(1), 1–10 (2016)

    Article  Google Scholar 

  22. Onie, S., Li, X., Liang, M., Sowmya, A., Larsen, M.E.: The use of closed-circuit television and video in suicide prevention: Narrative review and future directions. JMIR Ment. Health 8(5), e27663 (2021). https://doi.org/10.2196/27663. https://mental.jmir.org/2021/5/e27663

  23. Owens, C., Lloyd-Tomlins, S., Emmens, T., Aitken, P.: Suicides in public places: findings from one English county. Europ. J. Pub. Health 19(6), 580–582 (2009)

    Article  Google Scholar 

  24. Patino, L., Ferryman, J., Beleznai, C.: Abnormal behaviour detection on queue analysis from stereo cameras. In: 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2015)

    Google Scholar 

  25. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  26. Roduit, P.: Trajectory analysis using point distribution models. Tech. rep, EPFL (2009)

    Google Scholar 

  27. Ruan, S., Li, R., Bao, J., He, T., Zheng, Y.: CloudTP: a cloud-based flexible trajectory preprocessing framework. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 1601–1604. IEEE (2018)

    Google Scholar 

  28. Ruan, S., et al.: Learning to generate maps from trajectories. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 890–897 (2020)

    Google Scholar 

  29. Sharma, R., Guha, T.: A trajectory clustering approach to crowd flow segmentation in videos. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1200–1204. IEEE (2016)

    Google Scholar 

  30. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)

    Article  Google Scholar 

  31. Tung, F., Zelek, J.S., Clausi, D.A.: Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance. Image Vis. Comput. 29(4), 230–240 (2011)

    Article  Google Scholar 

  32. Wang, C., Zourlidou, S., Golze, J., Sester, M.: Trajectory analysis at intersections for traffic rule identification. Geo-spatial Information Science 24(1), 75–84 (2021)

    Article  Google Scholar 

  33. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  34. Wang, L., Liu, T., Wang, G., Chan, K.L., Yang, Q.: Video tracking using learned hierarchical features. IEEE Trans. Image Process. 24(4), 1424–1435 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649. IEEE (2017)

    Google Scholar 

  36. Xu, H., Zhou, Y., Lin, W., Zha, H.: Unsupervised trajectory clustering via adaptive multi-kernel-based shrinkage. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4328–4336 (2015)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Woollahra Municipal Council for sharing information on the use of CCTV as part of their commitment to self-harm minimization within their local area and the work they are doing with police and emergency response personnel and mental health support agencies. This work was supported by a Suicide Prevention Research Fund Innovation Grant, managed by Suicide Prevention Australia, and the NHMRC Centre of Research Excellence in Suicide Prevention (APP1152952). The contents of this manuscript are the responsibility of the authors, and have not been approved or endorsed by the funders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Anthony de Belen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., de Belen, R.A., Sowmya, A., Onie, S., Larsen, M. (2023). Region-Based Trajectory Analysis for Abnormal Behaviour Detection: A Trial Study for Suicide Detection and Prevention. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13643. Springer, Cham. https://doi.org/10.1007/978-3-031-37660-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37660-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37659-7

  • Online ISBN: 978-3-031-37660-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics