Abstract
The overall classification performance as well as generalization ability of a traditional information fusion architecture (built upon so called handcrafted features) is limited by its reliance on specific expert knowledge in the underlying domain of application. The integration of both feature engineering and fusion parameters’ optimization in a single optimization process using deep neural networks has shown in several domains of application (e.g. computer vision) its potential to significantly improve not just the inference performance of a classification system, but also its ability to generalize and adapt to unseen but related domains. This is done by enabling the designed system to autonomously detect, extract and combine relevant information directly from the raw signals accordingly to the classification task at hand. The following work focuses specifically on pain recognition based on bio-physiological modalities and consists of a summary of recently proposed deep fusion approaches for the aggregation of information stemming from a diverse set of physiological signals in order to perform an accurate classification of several levels of artificially induced pain intensities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. EBL-Schweitzer, Wiley (2014). https://books.google.de/books?id=MZgtBAAAQBAJ
Gao, J., Li, P., Chen, Z., Zhang, J.: A survey on deep learning for multimodal data fusion. Neural Comput. 32(5), 829–864 (2020). https://doi.org/10.1162/neco_a_01273
Zhang, Y., Sidibé, D., Morel, O., Mériaudeau, F.: Deep multimodal fusion for semantic image segmentation: a survey. Image Vis. Comput. 105, 104042 (2021). https://doi.org/10.1016/j.imavis.2020.104042
Roitberg, A., Pollert, T., Haurilet, M., Martin, M., Stiefelhagen, R.a.: Analysis of Deep Fusion Strategies for Multi-Modal Gesture Recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 198–206 (2019). https://doi.org/10.1109/CVPRW.2019.00029
Farahnakian, F., Heikkonen, J.: Deep Learning Applications, Volume 3, chap. RGB and Depth Image Fusion for Object Detection Using Deep Learning, pp. 73–93. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-3357-7_3
Zhang, Y., Wang, Z.R., Du, J.: Deep fusion: an attention guided factorized bilinear pooling for audio-video emotion recognition. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2019). https://doi.org/10.1109/IJCNN.2019.8851942
Praveen, R.G., et al.: A joint cross-attention model for audio-visual fusion in dimensional emotion recognition. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2485–2494 (2022). https://doi.org/10.1109/CVPRW56347.2022.00278
Nguyen, D., Nguyen, K., Sridharan, S., Dean, D., Fookes, C.: Deep spatio-temporal feature fusion with compact bilinear pooling for multimodal emotion recognition. Comput. Vis. Image Underst. 174, 33–42 (2018). https://doi.org/10.1016/j.cviu.2018.06.005
Li, X., Song, D., Zhang, P., Hou, Y., Hu, B.: Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring. Int. J. Data Min. Bioinform. 18(1), 1–27 (2017). https://doi.org/10.1504/IJDMB.2017.086097
Hawker, G.A., Mian, S., Kendzerska, T., French, M.: Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 63(S11), S240–S252 (2011). https://doi.org/10.1002/acr.20543
Eckard, C., et al.: The integration of technology into treatment programs to aid in the reduction of chronic pain. J. Pain Manage. Med. 2(3), 118 (2016). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5279929/
Werner, P., Al-Hamadi, A., Limbrecht-Ecklundt, K., Walter, S., Gruss, S., Traue, H.C.: Automatic pain assessment with facial activity descriptors. IEEE Trans. Affect. Comput. 8(3), 286–299 (2017). https://doi.org/10.1109/TAFFC.2016.2537327
Thiam, P., Kessler, V., Schwenker, F.: Hierarchical combination of video features for personalised pain level recognition. In: 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 465–470, April 2017. https://www.esann.org/sites/default/files/proceedings/legacy/es2017-104.pdf
Thiam, P., Schwenker, F.: Combining deep and hand-crafted features for audio-based pain intensity classification. In: Schwenker, F., Scherer, S. (eds.) MPRSS 2018. LNCS (LNAI), vol. 11377, pp. 49–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20984-1_5
Thiam, P., Kestler, H.A., Schwenker, F.: Two-stream attention network for pain recognition from video sequences. Sensors 20(839) (2020). https://doi.org/10.3390/s20030839
Tsai, F.S., Hsu, Y.L., Chen, W.C., Weng, Y.M., Ng, C.J., Lee, C.C.: Toward development and evaluation of pain level-rating scale for emergency triage based on vocal characteristics and facial expressions. In: Interspeech 2016, pp. 92–96 (2016). https://doi.org/10.21437/Interspeech. 2016–408
Martinez, D.L., Picard, R.W.: Multi-task neural networks for personalized pain recognition from physiological signals. CoRR abs/1708.08755 (2017). http://arxiv.org/abs/1708.08755
Bellmann, P., Thiam, P., Schwenker, F.: Multi-classifier-systems: architectures, algorithms and applications. In: Pedrycz, W., Chen, S.-M. (eds.) Computational Intelligence for Pattern Recognition. SCI, vol. 777, pp. 83–113. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89629-8_4
Bellmann, P., Thiam, P., Schwenker, F.: Using a quartile-based data transformation for pain intensity classification based on the SenseEmotion database. In: 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), pp. 310–316 (2019). https://doi.org/10.1109/ACIIW.2019.8925244
Walter, S., et al.: The BioVid heat pain database: data for the advancement and systematic validation of an automated pain recognition system. In: 2013 IEEE International Conference on Cybernetics, pp. 128–131 (2013). https://doi.org/10.1109/CYBConf.2013.6617456
Velana, M., et al.: The SenseEmotion database: a multimodal database for the development and systematic validation of an automatic pain- and emotion-recognition system. In: Schwenker, F., Scherer, S. (eds.) MPRSS 2016. LNCS (LNAI), vol. 10183, pp. 127–139. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59259-6_11
Haque, M.A., et al.: Deep multimodal pain recognition: a database and comparison of spatio-temporal visual modalities. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 250–257 (2018). https://doi.org/10.1109/FG.2018.00044
Gruss, S., et al.: Multi-modal signals for analyzing pain responses to thermal and electrical stimuli. J. Visualized Exp. (JoVE) (146), e59057 (2019). https://doi.org/10.3791/59057
Zhang, Z., et al.: Multimodal spontaneous emotion corpus for human behavior analysis. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3438–3446 (2016). https://doi.org/10.1109/CVPR.2016.374
Werner, P., Al-Hamadi, A., Niese, R., Walter, S., Gruss, S., Traue, H.C.: Automatic pain recognition from video and biomedical signals. In: 2014 22nd International Conference on Pattern Recognition, pp. 4582–4587 (2014). https://doi.org/10.1109/ICPR.2014.784
Walter, S., et al.: Automatic pain quantification using autonomic parameters. Psychol. Neurosci. 7(3), 363–380 (2014). https://doi.org/10.3922/j.psns.2014.041
Kächele, M., Werner, P., Al-Hamadi, A., Palm, G., Walter, S., Schwenker, F.: Bio-visual fusion for person-independent recognition of pain intensity. In: Schwenker, F., Roli, F., Kittler, J. (eds.) MCS 2015. LNCS, vol. 9132, pp. 220–230. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20248-8_19
Kächele, M., et al.: Multimodal data fusion for person-independent, continuous estimation of pain intensity. In: Iliadis, L., Jayne, C. (eds.) EANN 2015. CCIS, vol. 517, pp. 275–285. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23983-5_26
Kächele, M., Thiam, P., Amirian, M., Schwenker, F., Palm, G.: Methods for person-centered continuous pain intensity assessment from bio-physiological channels. IEEE J. Sel. Top. Signal Process. 10(5), 854–864 (2016). https://doi.org/10.1109/JSTSP.2016.2535962
Thiam, P., et al.: Multi-modal pain intensity recognition based on the SenseEmotion database. IEEE Trans. Affective Comput. (2019). https://doi.org/10.1109/TAFFC.2019.2892090, 2019 IEEE
Thiam, P., Kessler, V., Walter, S., Palm, G., Schwenker, F.: Audio-visual recognition of pain intensity. In: Schwenker, F., Scherer, S. (eds.) MPRSS 2016. LNCS (LNAI), vol. 10183, pp. 110–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59259-6_10
Kessler, V., Thiam, P., Amirian, M., Schwenker, F.: Multimodal fusion including camera photoplethysmography for pain recognition. In: 2017 International Conference on Companion Technology (ICCT), pp. 1–4 (2017). https://doi.org/10.1109/COMPANION.2017.8287083
Thiam, P., Bellmann, P., Kestler, H.A., Schwenker, F.: Exploring deep physiological models for nociceptive pain recognition. Sensors 4503(20) (2019). https://doi.org/10.3390/s19204503
Thiam, P., Kestler, H.A., Schwenker, F.: Multimodal deep denoising convolutional autoencoders for pain intensity classification based on physiological signals. In: Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods (ICPRAM), vol. 1, pp. 289–296. INSTICC, SciTePress (2020). https://doi.org/10.5220/0008896102890296
Thiam, P., Hihn, H., Braun, D.A., Kestler, H.A., Schwenker, F.: Multi-modal pain intensity assessment based on physiological signals: a deep learning perspective. Front. Physiol. 12, 720464 (2021). https://doi.org/10.3389/fphys.2021.720464
Antoniou, A., Storkey, A., Edwards, H.: Data Augmentation Generative Adversarial Networks. arXiv (2017). https://arxiv.org/abs/1711.04340
Acknowledgments
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Thiam, P., Kestler, H.A., Schwenker, F. (2023). Deep Learning Architectures for Pain Recognition Based on Physiological Signals. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13643. Springer, Cham. https://doi.org/10.1007/978-3-031-37660-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-37660-3_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37659-7
Online ISBN: 978-3-031-37660-3
eBook Packages: Computer ScienceComputer Science (R0)