Abstract
Prediction of gesture and demographic information from the face is complex and challenging, particularly for the masked face. This paper proposes a deep learning-based integrated approach to predict emotion and demographic information for unmasked and masked faces, consisting of four sub-tasks: masked face detection, masked face inpainting, emotion, age, and gender prediction. The masked face detector module provides a binary decision on whether the face mask is available or not by applying pre-trained MobileNetV3. We use the inpainting module based on U-Net embedding with ImageNet weights to remove the face mask and restore the face. We use the convolutional neural networks to predict emotion (e.g., happy, angry). Besides, VGGFace-based transfer learning has been used to predict demographic information (e.g., age, gender). Extensive experiments on five publicly available datasets: AffectNet, UTKFace, FER-2013, CelebA, and MAFA, show the effectiveness of our proposed method to predict emotion and demographic identification through masked face reconstruction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ahmed, A.E.A., Azim, N., Mahmood, M., Alshammari, H.: A deep learning model for face mask detection. Int. J. Comput. Sci. Netw. Secur. (IJCSNS) 2, 101–107 (2021). https://doi.org/10.22937/IJCSNS.2021.21.10.13
Anwar, A., Raychowdhury, A.: Masked face recognition for secure authentication. arXiv preprint arXiv:2008.11104 (2020)
Arriaga, O., Valdenegro-Toro, M., Plöger, P.: Real-time convolutional neural networks for emotion and gender classification. arXiv preprint arXiv:1710.07557 (2017)
Batagelj, B., Peer, P., Štruc, V., Dobrišek, S.: How to correctly detect face-masks for COVID-19 from visual information? Appl. Sci. 11(5), 2070 (2021)
Din, N.U., Javed, K., Bae, S., Yi, J.: A novel GAN-based network for unmasking of masked face. IEEE Access 8, 44276–44287 (2020)
Goodfellow, I.J., et al.: Challenges in representation learning: a report on three machine learning contests. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8228, pp. 117–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42051-1_16
Happy, S., Routray, A.: Automatic facial expression recognition using features of salient facial patches. IEEE Trans. Affect. Comput. 6(1), 1–12 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015
mask dataset (MAFA), F.: Kaggle.com (2020). https://www.kaggle.com/andrewmvd/face-mask-detection
Mollahosseini, A., Hasani, B., Mahoor, M.H.: AffectNet: a database for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput. 10(1), 18–31 (2017)
Mukherjee, P., Kaushik, V., Gupta, R., Jha, R., Kankanwadi, D., Lall, B.: MaskMTL: attribute prediction in masked facial images with deep multitask learning. arXiv preprint arXiv:2201.03002 (2022)
Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. British Machine Vision Association (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Savchenko, A.V.: Facial expression and attributes recognition based on multi-task learning of lightweight neural networks. In: 2021 IEEE 19th International Symposium on Intelligent Systems and Informatics (SISY), pp. 119–124. IEEE (2021)
Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)
Serengil, S.I., Ozpinar, A.: Hyperextended lightface: a facial attribute analysis framework. In: 2021 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1–4. IEEE (2021)
Sethi, S., Kathuria, M., Kaushik, T.: Face mask detection using deep learning: an approach to reduce risk of coronavirus spread. J. Biomed. Inform. 120, 103848 (2021)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Tang, Y.: Deep learning using linear support vector machines. arXiv preprint arXiv:1306.0239 (2013)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. arXiv preprint arXiv:1801.07892 (2018)
Zhang, Z., et al.: Age progression/regression by conditional adversarial autoencoder. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)
Acknowledgements
This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under 2232 Outstanding Researchers program, Project No. 118C301.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Islam, M.B., Hosen, M.I. (2023). Emotion, Age and Gender Prediction Through Masked Face Inpainting. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13643. Springer, Cham. https://doi.org/10.1007/978-3-031-37660-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-37660-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37659-7
Online ISBN: 978-3-031-37660-3
eBook Packages: Computer ScienceComputer Science (R0)