Skip to main content

Transfer Learning in Breast Mass Detection on the OMI-DB Dataset: A Preliminary Study

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13643))

Included in the following conference series:

  • 422 Accesses

Abstract

Early screening for breast cancer is an effective tool to detect tumors and decrease mortality among women. However, COVID restrictions made screening difficult in recent years due to a decrease in screening tests, reduction of routine procedures, and their delay. This preliminary study aimed to investigate mass detection in a large-scale OMI-DB dataset with three Transfer Learning settings in the early screening. We considered a subset of the OMI-DB dataset consisting of 6,000 cases, where we extracted 3,525 images with masses of Hologic Inc. manufacturer. This paper proposes to use the RetinaNet model with ResNet50 backbone to detect tumors in Full-Field Digital Mammograms. The model was initialized with ImageNet weights, COCO weights, and from scratch. We applied True Positive Rate at False Positive per Image evaluation metric with Free-Response Receiver Operating Characteristic curve to visualize the distributions of the detections. The proposed framework obtained 0.93 TPR at 0.84 FPPI with COCO weights initialization. ImageNet weights gave comparable results of 0.93 at 0.84 FPPI and from scratch demonstrated 0.84 at 0.84 FPPI.

This work was supported by MIUR (Minister for Education, University and Research, Law 232/216, Department of Excellence).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, X., Wang, S.-H.: Abnormality diagnosis in mammograms by transfer learning based on ResNet18. Fundam. Inform. 168, 219–230 (2019). https://doi.org/10.3233/fi-2019-1829

    Article  Google Scholar 

  2. Monticciolo, D.L., et al.: Breast cancer screening recommendations inclusive of all women at average risk: Update from the ACR and Society of Breast Imaging. J. Am. Coll. Radiol. 18, 1280–1288 (2021). https://doi.org/10.1016/j.jacr.2021.04.021

    Article  Google Scholar 

  3. Monticciolo, D.L., et al.: Breast cancer screening for average-risk women: recommendations from the ACR commission on breast imaging. J. Am. Coll. Radiol. 14, 1137–1143 (2017). https://doi.org/10.1016/j.jacr.2017.06.001

    Article  Google Scholar 

  4. D’Elia, C., Marrocco, C., Molinara, M., Tortorella, F.: Detection of clusters of microcalcifications in mammograms: a multi classifier approach. In: 2008 21st IEEE International Symposium on Computer-Based Medical Systems. IEEE (2008)

    Google Scholar 

  5. Bria, A., Marrocco, C., Karssemeijer, N., Molinara, M., Tortorella, F.: Deep cascade classifiers to detect clusters of microcalcifications. In: Tingberg, A., Lång, K., Timberg, P. (eds.) IWDM 2016. LNCS, vol. 9699, pp. 415–422. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41546-8_52

    Chapter  Google Scholar 

  6. Marrocco, C., Molinara, M., Tortorella, F.: Algorithms for detecting clusters of microcalcifications in mammograms. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 884–891. Springer, Heidelberg (2005). https://doi.org/10.1007/11553595_108

    Chapter  Google Scholar 

  7. Savelli, B., Bria, A., Molinara, M., Marrocco, C., Tortorella, F.: A multi-context CNN ensemble for small lesion detection. Artif. Intell. Med. 103, 101749 (2020). https://doi.org/10.1016/j.artmed.2019.101749

    Article  Google Scholar 

  8. Bria, A., et al.: Improving the automated detection of calcifications using adaptive variance stabilization. IEEE Trans. Med. Imaging 37, 1857–1864 (2018). https://doi.org/10.1109/tmi.2018.2814058

    Article  Google Scholar 

  9. Marchesi, A., et al.: The effect of mammogram preprocessing on microcalcification detection with convolutional neural networks. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). IEEE (2017)

    Google Scholar 

  10. Halling-Brown, M.D., et al.: OPTIMAM mammography image database: a large-scale resource of mammography images and clinical data. Radiol. Artif. Intell. 3, e200103 (2021). https://doi.org/10.1148/ryai.2020200103

  11. Agarwal, R., Díaz, O., Yap, M.H., Lladó, X., Martí, R.: Deep learning for mass detection in full field digital mammograms. Comput. Biol. Med. 121, 103774 (2020). https://doi.org/10.1016/j.compbiomed.2020.103774

    Article  Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2009)

    Google Scholar 

  13. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  14. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE (2017)

    Google Scholar 

  15. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2014)

    Google Scholar 

  16. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV). IEEE (2015)

    Google Scholar 

  17. Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

    Google Scholar 

  18. Zlocha, M., Dou, Q., Glocker, B.: Improving RetinaNet for CT lesion detection with dense masks from weak RECIST labels. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 402–410. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_45

    Chapter  Google Scholar 

  19. Chen, J., et al.: Detection of cervical lesions in colposcopic images based on the RetinaNet method. Biomed. Sig. Process. Control 75, 103589 (2022). https://doi.org/10.1016/j.bspc.2022.103589

    Article  Google Scholar 

  20. Swinburne, N.C., et al.: for the MSK mind consortium: semisupervised training of a brain MRI tumor detection model using mined annotations. Radiology 303, 80–89 (2022). https://doi.org/10.1148/radiol.210817

    Article  Google Scholar 

  21. Adachi, M., et al.: Detection and diagnosis of breast cancer using artificial intelligence based assessment of maximum intensity projection dynamic contrast-enhanced magnetic resonance images. Diagnostics (Basel) 10, 330 (2020). https://doi.org/10.3390/diagnostics10050330

  22. Kozegar, E., Soryani, M., Minaei, B., Domingues, I.: Assessment of a novel mass detection algorithm in mammograms. J. Cancer Res. Ther. 9, 592–600 (2013). https://doi.org/10.4103/0973-1482.126453

    Article  Google Scholar 

  23. Akselrod-Ballin, A., et al.: Deep learning for automatic detection of abnormal findings in breast mammography. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 321–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_37

    Chapter  Google Scholar 

  24. Shen, R., Yao, J., Yan, K., Tian, K., Jiang, C., Zhou, K.: Unsupervised domain adaptation with adversarial learning for mass detection in mammogram. Neurocomputing (2020)

    Google Scholar 

  25. Anitha, J., Peter, J.D., Pandian, S.I.A.: A dual stage adaptive thresholding (DuSAT) for automatic mass detection in mammograms. Comput. Comput. Methods Programs Biomed. 138, 93–104 (2017)

    Article  Google Scholar 

  26. te Brake, G.M., Karssemeijer, N., Hendriks, J.H.C.L.: An automatic method to discriminate malignant masses from normal tissue in digital mammograms1. Phys. Med. Biol. 45, 2843–2857 (2000). https://doi.org/10.1088/0031-9155/45/10/308

    Article  Google Scholar 

  27. Dhungel, N., Carneiro, G., Bradley, A.P.: A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med. Med. Image Anal. 37, 114–128 (2017)

    Article  Google Scholar 

  28. Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with Deep Learning. Sci. Sci. Rep. 8 (2018)

    Google Scholar 

  29. Jung, H., et al.: Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network. PLoS ONE 13, e0203355 (2018). https://doi.org/10.1371/journal.pone.0203355

    Article  Google Scholar 

  30. Agarwal, R., Diaz, O., Lladó, X., Yap, M.H., Martí, R.: Automatic mass detection in mammograms using deep convolutional neural networks. J. Med. Imaging (Bellingham). 6, 1 (2019). https://doi.org/10.1117/1.jmi.6.3.031409

Download references

Acknowledgements

The authors acknowledge the OPTIMAM project and Cancer Research Technology for providing the images used in this study, the staff at Royal Surrey NHS Foundation Trust who developed OMI-DB, and the charity Cancer Research UK which funded the OPTIMAM project.

This work was supported by MUR (Italian Ministry for University and Research) funding to AB, CM, and MM through the DIEI Department of Excellence 2018-2022 (law 232/2016) and to FT through the DIEM Department of Excellence 2023-2027 (law 232/2016). Ruth Kehali Kassahun holds an EACEA Erasmus+ grant for the master in Medical Imaging and Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Molinara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ryspayeva, M., Molinara, M., Bria, A., Marrocco, C., Tortorella, F. (2023). Transfer Learning in Breast Mass Detection on the OMI-DB Dataset: A Preliminary Study. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13643. Springer, Cham. https://doi.org/10.1007/978-3-031-37660-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37660-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37659-7

  • Online ISBN: 978-3-031-37660-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics