Abstract
Fully Homomorphic Encryption (FHE) is a groundbreaking technology that allows for arbitrary computations to be performed on encrypted data. State-of-the-art schemes such as Brakerski Gentry Vaikuntanathan (BGV) are based on the Learning with Errors over rings (RLWE) assumption where each ciphertext has an associated error that grows with each homomorphic operation. For correctness, the error needs to stay below a certain threshold, requiring a trade-off between security and error margin for computations in the parameters. Choosing the parameters accordingly, for example, the polynomial degree or the ciphertext modulus, is challenging and requires expert knowledge specific to each scheme.
In this work, we improve the parameter generation across all steps of its process. We provide a comprehensive analysis for BGV in the Double Chinese Remainder Theorem (DCRT) representation providing more accurate and better bounds than previous work on the DCRT, and empirically derive a closed formula linking the security level, the polynomial degree, and the ciphertext modulus. Additionally, we introduce new circuit models and combine our theoretical work in an easy-to-use parameter generator for researchers and practitioners interested in using BGV for secure computation.
Our formula results in better security estimates than previous closed formulas while our DCRT analysis results in reduced prime sizes of up to 42% compared to previous work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption schemes: theory and implementation. ACM Comput. Surv. (CSUR) 51(4), 1–35 (2018)
Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_4
Albrecht, M.R., et al.: Homomorphic encryption security standard. Technical report. Toronto, Canada (2018). https://HomomorphicEncryption.org
Albrecht, M.R., Cid, C., Faugere, J.C., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Crypt. 9(3), 169–203 (2015)
Badawi, A.A., et al.: OpenFHE: open-source fully homomorphic encryption library. Cryptology ePrint Archive, Paper 2022/915 (2022). https://eprint.iacr.org/2022/915
Bergerat, L., et al.: Parameter Optimization & Larger Precision for (T) FHE. Cryptology ePrint Archive (2022)
Biasioli, B., Marcolla, C., Calderini, M., Mono, J.: Improving and Automating BFV Parameters Selection: An Average-Case Approach. Cryptology ePrint Archive (2023)
Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29
Chen, H., Kim, M., Razenshteyn, I., Rotaru, D., Song, Y., Wagh, S.: Maliciously secure matrix multiplication with applications to private deep learning. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 31–59. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_2
Costache, A., Laine, K., Player, R.: Evaluating the effectiveness of heuristic worst-case noise analysis in FHE. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 546–565. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_27
Costache, A., Nürnberger, L., Player, R.: Optimizations and trade-offs for helib. Cryptology ePrint Archive (2023)
Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption scheme is best? In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 325–340. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_19
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Di Giusto, A., Marcolla, C.: Breaking the power-of-two barrier: noise estimation for BGV in NTT-friendly rings. Cryptology ePrint Archive, Paper 2023/783 (2023)
Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive (2012)
Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_3
Gentry, C.: A Fully Homomorphic Encryption Scheme, vol. 20. Stanford university, Stanford (2009)
Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49
Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homomorphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_5
Halevi, S., Shoup, V.: Design and implementation of HElib: a homomorphic encryption library. Cryptology ePrint Archive (2020)
Iliashenko, I.: Optimisations of fully homomorphic encryption (2019)
Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes for finite fields. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 608–639. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_21
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Marcolla, C., Sucasas, V., Manzano, M., Bassoli, R., Fitzek, F.H., Aaraj, N.: Survey on fully homomorphic encryption, theory, and applications. Proc. IEEE 110(10), 1572–1609 (2022)
Martins, P., Sousa, L., Mariano, A.: A survey on fully homomorphic encryption: an engineering perspective. ACM Comput. Surv. (CSUR) 50(6), 1–33 (2017)
Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_5 ISBN 978-3-540-88702-7
PALISADE (2022). https://palisade-crypto.org
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, pp. 84–93 (2005)
Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66(1–3), 181–199 (1994)
Acknowledgement
The work described in this paper has been supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972. We also would like to thank Anna Hambitzer for her helpful comments on coupled optimization.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mono, J., Marcolla, C., Land, G., Güneysu, T., Aaraj, N. (2023). Finding and Evaluating Parameters for BGV. In: El Mrabet, N., De Feo, L., Duquesne, S. (eds) Progress in Cryptology - AFRICACRYPT 2023. AFRICACRYPT 2023. Lecture Notes in Computer Science, vol 14064. Springer, Cham. https://doi.org/10.1007/978-3-031-37679-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-37679-5_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37678-8
Online ISBN: 978-3-031-37679-5
eBook Packages: Computer ScienceComputer Science (R0)