Skip to main content

Applications of Timed-Release Encryption with Implicit Authentication

  • Conference paper
  • First Online:
Progress in Cryptology - AFRICACRYPT 2023 (AFRICACRYPT 2023)

Abstract

A whistleblower is a person who leaks sensitive information on a prominent individual or organisation engaging in an unlawful or immoral activity. Whistleblowing has the potential to mitigate corruption and fraud by identifying the misuse of capital. In extreme cases whistleblowing can also raise awareness about unethical practices to individuals by highlighting dangerous working conditions. Obtaining and sharing the sensitive information associated with whistleblowing can carry great risk to the individual or party revealing the data. In this paper we extend the notion of timed-release encryption to include a new security property which we term implicit authentication, with the goal of making the practice of whistleblowing safer.

We formally define the new primitive of timed-release encryption with implicit authentication (TRE-IA), providing rigorous game-base definitions. We then build a practical TRE-IA construction that satisfies the security requirements of this primitive, using repeated squaring in an RSA group, and the RSA-OAEP encryption scheme. We formally prove our construction secure and provide a performance analysis of our implementation in Python along with recommendations for practical deployment and integration with an existing whistleblowing tool SecureDrop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Numerical analysis also indicated that over thousands of trials, independent of the size of \(\phi (N)\), the average number of iterations the while loop must run until a suitable challenge was found was 3.3.

References

  1. Edward Snowden’s Motive Revealed: He Can ‘Sleep at Night’ (2014). https://www.nbcnews.com/feature/edward-snowden-interview/edward-snowdens-motive-revealed-he-can-sleep-night-n116851

  2. SecureDrop Whistleblower Submission System (2021). https://securedrop.org

  3. Signal Messaging (2021). https://signal.org/en

  4. The Tor Project (2021). https://www.torproject.org

  5. Abdi, H.: Coefficient of variation. In: Encyclopedia of Research Design (2010)

    Google Scholar 

  6. Barker, E., Chen, L., Roginsky, A., Vassilev, A., Davis, R., Simon, S.: SP 800-56b rev. 2, recommendation for pair-wise key-establishment using integer factorization cryptography. ITL Computer Security Resource Center (2019)

    Google Scholar 

  7. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41

    Chapter  Google Scholar 

  8. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053428

    Chapter  Google Scholar 

  9. Berglez, P., Gearing, A.: The panama and paradise papers. The rise of a global fourth estate. Int. J. Commun. 12, 20 (2018)

    Google Scholar 

  10. Berti, F., Koeune, F., Pereira, O., Peters, T., Standaert, F.: Ciphertext integrity with misuse and leakage: definition and efficient constructions with symmetric primitives. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 37–50 (2018)

    Google Scholar 

  11. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. J. Comput. 15, 364–383 (1986)

    MathSciNet  MATH  Google Scholar 

  12. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_25

    Chapter  Google Scholar 

  13. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_15

    Chapter  Google Scholar 

  14. Burdges, J., De Feo, L.: Delay encryption. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 302–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_11

    Chapter  Google Scholar 

  15. Carmichael, R.: Note on a new number theory function. Bull. Am. Math. Soc. (1910)

    Google Scholar 

  16. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and non-interactive timed-release encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005). https://doi.org/10.1007/11602897_25

    Chapter  MATH  Google Scholar 

  17. Chvojka, P., Jager, T., Slamanig, D., Striecks, C.: Versatile and sustainable timed-release encryption and sequential time-lock puzzles (extended abstract). In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12973, pp. 64–85. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88428-4_4

    Chapter  Google Scholar 

  18. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  19. Friedlander, J., Pomerance, C., Shparlinski, I.: Period of the power generator and small values of Carmichael’s function. Am. Math. Soc. Math. Comput. 70, 1591–1605 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 260–274. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_16

    Chapter  Google Scholar 

  21. Garside, J.: Panama Papers: inside the Guardian’s investigation into offshore secrets (2016). https://www.theguardian.com/news/2016/apr/16/panama-papers-inside-the-guardians-investigation-into-offshore-secrets

  22. Gauss, C.: Disquisitiones Arithmeticae. Yale University Press (2009)

    Google Scholar 

  23. Griffin, F., Shparlinski, I.: On the linear complexity profile of the power generator. IEEE Trans. Inf. Theory 46, 2159–2162 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hardy, G., Wright, E.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford (1979)

    MATH  Google Scholar 

  25. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press, Boca Raton (2014)

    Book  MATH  Google Scholar 

  26. Lenstra, A.K., Shparlinski, I.E.: Selective forgery of RSA signatures with fixed-pattern padding. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 228–236. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3_16

    Chapter  Google Scholar 

  27. Liedtke, M., Mattise, J.: Leaked “pandora papers” expose how billionaires and corrupt leaders hide wealth. Guardian (Sydney) (2021)

    Google Scholar 

  28. Loe, A., Medley, L., O’Connell, C., Quaglia, E.: TIDE: a novel approach to constructing timed-release encryption. In: Nguyen, K., Yang, G., Guo, F., Susilo, W. (eds.) ACISP 2022. LNCS, vol. 13494, pp. 244–264. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22301-3_13

    Chapter  Google Scholar 

  29. Mao, W.: Timed-release cryptography. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 342–357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45537-X_27

    Chapter  Google Scholar 

  30. Girault, M., Misarsky, J.-F.: Selective forgery of RSA signatures using redundancy. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 495–507. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_34

    Chapter  Google Scholar 

  31. Miller, G.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci. 13(3), 300–317 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. O’Donovan, J., Wagner, H., Zeume, S.: The value of offshore secrets: evidence from the panama papers. Rev. Financ. Stud. 32, 4117–4155 (2019)

    Article  Google Scholar 

  33. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical Computer Science Conference, ITCS 201 (2019)

    Google Scholar 

  34. Rabin, M.: Digitalized signatures and public-key functions as intractable as factorization. MIT/LCS/TR-212, MIT Laboratory for Computer Science (1979)

    Google Scholar 

  35. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rivest, R., Shamir, A., Wagner, D.: Time-lock puzzles and timed-release crypto. MIT/LCS/TR-684, MIT Laboratory for Computer Science (1996)

    Google Scholar 

  37. Scheuerman, W.: Whistleblowing as civil disobedience: the case of Edward Snowden. Philos. Soc. Criticism 40, 609–628 (2014)

    Article  Google Scholar 

  38. Verble, J.: The NSA and Edward Snowden: surveillance in the 21st century. ACM SIGCAS Comput. Soc. 44, 14–20 (2014)

    Article  Google Scholar 

  39. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_13

    Chapter  Google Scholar 

  40. Westfall, P.: Kurtosis as Peakedness. Am. Stat. 68, 91–195 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Zheng, Y.: Digital signcryption or how to achieve cost (signature & encryption) \(\ll \) cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052234

    Chapter  Google Scholar 

  42. Zheng, Y.: A new efficient signcryption scheme in the standard model. Secur. Commun. Netw. 8(5), 703–878 (2015)

    Google Scholar 

  43. Zheng, Y., Imai, H.: How to construct efficient signcryption schemes on elliptic curves. In: Proceedings of IFIP SEC98, vol. 68, no. 5, pp. 227–233 (1998)

    Google Scholar 

  44. Zimmerman, P.: Why I Wrote PGP, Essays on PGP. Phil Zimmermann and Associates LLC (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelique Loe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loe, A., Medley, L., O’Connell, C., Quaglia, E.A. (2023). Applications of Timed-Release Encryption with Implicit Authentication. In: El Mrabet, N., De Feo, L., Duquesne, S. (eds) Progress in Cryptology - AFRICACRYPT 2023. AFRICACRYPT 2023. Lecture Notes in Computer Science, vol 14064. Springer, Cham. https://doi.org/10.1007/978-3-031-37679-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37679-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37678-8

  • Online ISBN: 978-3-031-37679-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics