Skip to main content

A Novel Time-Series Database of Finger Hypercubes Before and After Hand Sanitization with Demographics

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13645))

Included in the following conference series:

Abstract

During the past decade, hyperspectral imaging (HSI) has been an area of broad, innovative work in a variety of applications such as health, defense, and remote sensing. Hyperspectral images can be collected using a compact HSI imager and are referred to also as hypercubes. Currently, there are no biometric hyperspectral databases available to the community. In this paper, we create the Finger Hypercubes Sanitization with Demographics Database (FHSD) (https://github.com/cysber-CSIS/GMU-CSIS—Finger-Hypercubes-Sanitization-with-Demographics-FHSD-2022) consisting of hyperspectral images of human fingers along with their demographics (i.e., age, gender, and ethnicity) captured before and after hand sanitization. This gender-balanced database consists of images pertaining to 100 subjects collected in an indoor environment with a white background under proper lighting conditions using the Resonon bench-top Pika-L hyperspectral imaging system (400–1000 nm). For each subject, multiple left and right index samples were acquired before and after sanitization. In addition to spatial information, HSI data provides 281 channels decoding a spectral component able to describe skin reflectance. Thus, this data holds great potential for enabling a more in-depth analysis of demographic differentials in fingerprints compared to conventional sensing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marasco, E.: Biases in fingerprint recognition systems: where are we at? In: 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–5 (2019)

    Google Scholar 

  2. Marasco, E., Lugini, L., Cukic, B.: Exploiting quality and texture features to estimate age and gender from fingerprints. In: Biometric and Surveillance Technology for Human and Activity Identification XI, vol. 9075, pp. 112–121. SPIE (2014)

    Google Scholar 

  3. Jain, A.K., Deb, D., Engelsma, J.J.: Biometrics: trust, but verify. arXiv preprint arXiv:2105.06625 (2021)

  4. Marasco, E., He, M., Tang, L., Tao, Y.: Demographic effects in latent fingerprint matching and their relation to image quality. In: 2022 7th International Conference on Machine Learning Technologies (ICMLT), pp. 170–179 (2022)

    Google Scholar 

  5. Godbole, A., Grosz, S.A., Nandakumar, K., Jain, A.K.: On demographic bias in fingerprint recognition, arXiv preprint arXiv:2205.09318 (2022)

  6. Marasco, E., Tao, Y.: Mitigating the impact of hand sanitizer on the spectral signature of finger hypercubes. In: 2022 International Joint Conference on Biometrics (IJCB 2022) (2022)

    Google Scholar 

  7. Roui-Abidi, B., Abidi, M.: Multispectral and Hyperspectral Biometrics. In: Li, S.Z., Jain, A. (eds.) Encyclopedia of Biometrics, pp. 993–998. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-73003-5_163

    Chapter  Google Scholar 

  8. Jenerowicz, A., Walczykowski, P., Gladysz, L., Gralewicz, M.: Application of hyperspectral imaging in hand biometrics, vol. 10802, p. 108020G (2018)

    Google Scholar 

  9. Robila, S.A.: Toward hyperspectral face recognition. In: Image Processing: Algorithms and Systems VI, vol. 6812, pp. 296–304. SPIE (2008)

    Google Scholar 

  10. Di Cecilia, L., Marazzi, F., Rovati, L.: Hyperspectral imaging of the human iris, p. 104120R (2017)

    Google Scholar 

  11. Dabhade, S.B., Bansod, N., Rode, Y., Kazi, M., Tharewal, S., Kale, K.: Hyper spectral image analysis for human authentication, pp. 1–4 (2017)

    Google Scholar 

  12. GringGIS: 10 important applications of hyperspectral image (2016). https://grindgis.com/remote-sensing/10-important-applications-of-hyperspectral-image

  13. Rampfesthudson: How does a hyperspectral sensor work? (2019). https://www.rampfesthudson.com/how-does-a-hyperspectral-sensor-work/

  14. NIREOS: What is hyperspectral imaging? (2022). https://www.nireos.com/hyperspectral-imaging/

  15. Marasco, E., Cando, S., Tang, L., Tabassi, E.: Cross-sensor evaluation of textural descriptors for gender prediction from fingerprints. In: IEEE Winter Applications of Computer Vision Workshops (WACVW), pp. 55–62. IEEE (2019)

    Google Scholar 

  16. Rathgeb, C., Drozdowski, P., Frings, D.C., Damer, N., Busch, C.: Demographic fairness in biometric systems: what do the experts say? arXiv preprint arXiv:2105.14844 (2021)

  17. Marasco, E.: Biases in fingerprint recognition systems: where are we at? In: 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–5. IEEE (2019)

    Google Scholar 

  18. Yoon, S., Jain, A.K.: Longitudinal study of fingerprint recognition. Proc. Natl. Acad. Sci. 112(28), 8555–8560 (2015)

    Article  Google Scholar 

  19. Marasco, E., He, M., Tang, L., Sriram, S.: Accounting for demographic differentials in forensic error rate assessment of latent prints via covariate-specific ROC regression. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds.) CVIP 2020. CCIS, vol. 1376, pp. 338–350. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1086-8_30

    Chapter  Google Scholar 

  20. Lugini, L., Marasco, E., Cukic, B., Dawson, J.: Removing gender signature from fingerprints. In: 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1283–1287. IEEE (2014)

    Google Scholar 

  21. Marasco, E., Cukic, B., Shehab, M., Usman, R.: Attack trees for protecting biometric systems against evolving presentation attacks. In: 16th Annual IEEE International Conference on Technologies for Homeland Security (HST) (2017)

    Google Scholar 

  22. Marasco, E., Cukic, B.: Privacy protection schemes for fingerprint recognition systems. In: Biometric and Surveillance Technology for Human and Activity Identification XII, vol. 9457, pp. 83–96. SPIE (2015)

    Google Scholar 

  23. Marasco, E., Vurity, A.: Fingerphoto presentation attack detection: generalization in smartphones. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 4518–4523. IEEE (2021)

    Google Scholar 

  24. Taherkhani, F., Dawson, J., Nasrabadi, N.M.: Deep sparse band selection for hyperspectral face recognition, arXiv preprint arXiv:1908.09630 (2019)

  25. Socolinsky, D.A., Wolff, L.B., Neuheisel, J.D., Eveland, C.K.: Illumination invariant face recognition using thermal infrared imagery. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-I (2001)

    Google Scholar 

  26. Wikipedia: Hyperspectral imaging (2022). https://en.wikipedia.org/wiki/Hyperspectral_imaging

  27. Exelis, an introduction to hyperspectral imaging (2014). https://www.ugpti.org/smartse/research/citations/downloads/Excelis-Introduction_to_HSI_Technology-2014.pdf

  28. Government of canada, radiation - target interactions (2015). https://www.nrcan.gc.ca/maps-tools-publications/satellite-imagery-air-photos/remote-sensing-tutorials/introduction/radiation-target-interactions/14637

  29. Howard, D.: Electromagnetic radiation absorption (2022). https://study.com/academy/lesson/electromagnetic-radiation-absorption.html

  30. College of Earth and Mineral Sciences: The roads traveled most by radiation (2020). https://www.e-education.psu.edu/meteo3/l2_p4.html

  31. Thorlabs, P.: Camera Noise and Temperature Tutorial (2020). https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=10773#: :text=Dark%20Shot%20Noise%20(%CF%83D,excited%20int%20the%20conduction%20band)

  32. Vo-Dinh, T.: Biomedical photonics handbook, biomedical diagnostics (2014). https://books.google.com/books?hl=en &lr= &id=IY_LBQAAQBAJ &oi=fnd &pg=PP1 &ots=6kuSjbZmyy &sig=zfkgBsD-F5D8Xjnv637xM1IZzlw#v=onepage &q &f=false

  33. Wikipedia: Fluorescence (2022). https://en.wikipedia.org/wiki/Fluorescence

  34. Kamruzzaman, M., Sun, D.-W.: Introduction to hyperspectral imaging technology. In: Computer Vision Technology for Food Quality Evaluation, pp. 111–139. Elsevier (2016)

    Google Scholar 

  35. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 010901 (2014)

    Article  Google Scholar 

  36. Qin, J., Chao, K., Kim, M.S., Lu, R., Burks, T.F.: Hyperspectral and multispectral imaging for evaluating food safety and quality. J. Food Eng. 118(2), 157–171 (2013)

    Article  Google Scholar 

  37. Jia, S., Jiang, S., Lin, Z., Li, N., Xu, M., Yu, S.: A survey: deep learning for hyperspectral image classification with few labeled samples. Neurocomputing 448, 179–204 (2021)

    Article  Google Scholar 

  38. Halicek, M., Fabelo, H., Ortega, S., Callico, G.M., Fei, B.: In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: revealing the invisible features of cancer. Cancers 11(6), 756 (2019)

    Article  Google Scholar 

  39. Gowen, A.A., Feng, Y., Gaston, E., Valdramidis, V.: Recent applications of hyperspectral imaging in microbiology. Talanta 137, 43–54 (2015)

    Article  Google Scholar 

  40. Liu, Z., Yu, H., MacGregor, J.F.: Standardization of line-scan NIR imaging systems. J. Chemom. J. Chemom. Soc. 21(3–4), 88–95 (2007)

    Google Scholar 

  41. Garini, Y., Young, I.T., McNamara, G.: Spectral imaging: principles and applications. Cytometry Part A J. Int. Soc. Anal. Cytol. 69(8), 735–747 (2006)

    Article  Google Scholar 

  42. Edelman, G.J., Gaston, E., Van Leeuwen, T.G., Cullen, P., Aalders, M.C.: Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci. Int. 223(1–3), 28–39 (2012)

    Article  Google Scholar 

  43. Resonon pika l, Bozeman, MT 59715 USA (2014). https://resonon.com/Pika-L

Download references

Acknowledgment

This work was funded by the National Science Foundation (NSF) grant #2036151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Sai Sumanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sumanth, S.S., Marasco, E. (2023). A Novel Time-Series Database of Finger Hypercubes Before and After Hand Sanitization with Demographics. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13645. Springer, Cham. https://doi.org/10.1007/978-3-031-37731-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37731-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37730-3

  • Online ISBN: 978-3-031-37731-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics