Abstract
For art investigations of paintings, multiple imaging technologies, such as visual light photography, infrared reflectography, ultraviolet fluorescence photography, and x-radiography are often used. For a pixel-wise comparison, the multi-modal images have to be registered. We present a registration and visualization software tool, that embeds a convolutional neural network to extract cross-modal features of the crack structures in historical paintings for automatic registration. The graphical user interface processes the user’s input to configure the registration parameters and to interactively adapt the image views with the registered pair and image overlays, such as by individual or synchronized zoom or movements of the views. In the evaluation, we qualitatively and quantitatively show the effectiveness of our software tool in terms of registration performance and short inference time on multi-modal paintings and its transferability by applying our method to historical prints.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
The Bosch Research and Conservation Project. https://boschproject.org. Accessed 25 May 2022
Baráth, D., Matas, J.: Graph-cut RANSAC. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6733–6741 (2018). https://doi.org/10.1109/CVPR.2018.00704
Baráth, D., Noskova, J., Ivashechkin, M., Matas, J.: MAGSAC++, a fast, reliable and accurate robust estimator. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1301–1309 (2020). https://doi.org/10.1109/CVPR42600.2020.00138
Cappellini, V., Del Mastio, A., De Rosa, A., Piva, A., Pelagotti, A., El Yamani, H.: An automatic registration algorithm for cultural heritage images. In: IEEE International Conference on Image Processing 2005 2, pp. II-566 (2005). https://doi.org/10.1109/ICIP.2005.1530118
Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. Pattern Recognit. 236–243 (2003). https://doi.org/10.1007/978-3-540-45243-0_31
Conover, D.M., Delaney, J.K., Loew, M.H.: Automatic registration and mosaicking of technical images of old master paintings. Appl. Phys. A 119(4), 1567–1575 (2015). https://doi.org/10.1007/s00339-015-9140-1
DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 224–236 (2018). https://doi.org/10.1109/CVPRW.2018.00060
Dusmanu, M., et al.: D2-Net: a trainable CNN for joint description and detection of local features. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8084–8093 (2019). https://doi.org/10.1109/CVPR.2019.00828
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692
Fransen, B., Temmermans, F., Currie, C.: Imaging techniques and methodologies for acquisition, processing and distribution of multimodal image data from the oeuvre of Jan van Eyck. In: Optics, Photonics and Digital Technologies for Imaging Applications VI, vol. 11353, pp. 68–81 (2020). https://doi.org/10.1117/12.2556260
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94
Murashov, D.: A procedure for automated registration of fine art images in visible and X-ray spectral bands. In: Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP-2011), pp. 162–167 (2011)
Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010). https://doi.org/10.1109/TPAMI.2010.46
Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: USAC: a universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2022–2038 (2013). https://doi.org/10.1109/TPAMI.2012.257
Sindel, A., et al.: A keypoint detection and description network based on the vessel structure for multi-modal retinal image registration. Bildverarbeitung für die Medizin 2022, 57–62 (2022). https://doi.org/10.1007/978-3-658-36932-3_12
Sindel, A., Maier, A., Christlein, V.: A visualization tool for image fusion of artworks. In: 25th International Conference on Cultural Heritage and New Technologies (2020)
Sindel, A., Maier, A., Christlein, V.: CraquelureNet: matching the crack structure in historical paintings for multi-modal image registration. In: IEEE International Conference on Image Processing 2021, pp. 994–998 (2021). https://doi.org/10.1109/ICIP42928.2021.9506071
Stein, D., Fritzsche, K., Nolden, M., Meinzer, H., Wolf, I.: The extensible open-source rigid and affine image registration module of the medical imaging interaction toolkit (MITK). Comput. Methods Programs Biomed. 100(1), 79–86 (2010). https://doi.org/10.1016/j.cmpb.2010.02.008
Zacharopoulos, A., et al.: A method for the registration of spectral images of paintings and its evaluation. J. Cult. Herit. 29, 10–18 (2018). https://doi.org/10.1016/j.culher.2017.07.004
Acknowledgements
Thanks to Daniel Hess, Oliver Mack, Daniel Görres, Wibke Ottweiler, Germanisches Nationalmuseum (GNM), and Gunnar Heydenreich, Cranach Digital Archive (CDA), and Thomas Klinke, TH Köln, and Amalie Hänsch, FAU Erlangen-Nürnberg for providing image data, and to Leibniz Society for funding the research project “Critical Catalogue of Luther portraits (1519 - 1530)” with grant agreement No. SAW-2018-GNM-3-KKLB, to the European Union’s Horizon 2020 research and innovation programme within the Odeuropa project under grant agreement No. 101004469 for funding this publication, and to NVIDIA for their GPU hardware donation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Sindel, A., Maier, A., Christlein, V. (2023). A Multi-modal Registration and Visualization Software Tool for Artworks Using CraquelureNet. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13645. Springer, Cham. https://doi.org/10.1007/978-3-031-37731-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-37731-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37730-3
Online ISBN: 978-3-031-37731-0
eBook Packages: Computer ScienceComputer Science (R0)