Abstract
Comic panel detection is the task of identifying panel regions from a given comic image. Many comic datasets provide the borders of the panel lines as its panel region annotations, expressed in formats such as bounding boxes. However, since such panel annotations are usually not aware of the contents of the panel, they do not capture objects that extend outside of the panels, causing such objects to be partially discarded when panels are cropped along the annotations. In such applications, a content-aware annotation that contains all of the contents in each panel is suitable. In this paper, we assess the problem of content-aware comic panel detection using two types of annotations. We first create a small dataset with bounding box annotations where each region contains the entire contents of each panel, and train a detection model. We also explore training a pixel-wise instance segmentation model using synthetic data.
H. Ikuta and R. Yu—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Aizawa, K., et al.: Building a manga dataset “manga109” with annotations for multimedia applications. IEEE MultiMedia 27(2), 8–18 (2020). https://doi.org/10.1109/mmul.2020.2987895
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chen, K., et al.: MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)
Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (December 2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2014)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Ho, A.K.N., Burie, J.C., Ogier, J.M.: Panel and speech balloon extraction from comic books. In: 2012 10th IAPR International Workshop on Document Analysis Systems, pp. 424–428. IEEE (2012)
Lee, J., Yi, J., Shin, C., Yoon, S.: Bbam: Bounding box attribution map for weakly supervised semantic and instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2643–2652 (2021)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools Appl. 76(20), 21811–21838 (2016). https://doi.org/10.1007/s11042-016-4020-z
Nguyen Nhu, V., Rigaud, C., Burie, J.C.: What do we expect from comic panel extraction? In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW). vol. 1, pp. 44–49 (2019). https://doi.org/10.1109/ICDARW.2019.00013
Ogawa, T., Otsubo, A., Narita, R., Matsui, Y., Yamasaki, T., Aizawa, K.: Object detection for comics using manga109 annotations (2018). https://arxiv.org/abs/1803.08670
Pang, X., Cao, Y., Lau, R.W., Chan, A.B.: A robust panel extraction method for manga. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 1125–1128 (2014)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition, pp. 779–788 (2016)
Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Redmon, J., Farhadi, A.: Yolov3: An incremental improvement (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)
Wada, K.: Labelme: Image Polygonal Annotation with Python. https://doi.org/10.5281/zenodo.5711226. https://github.com/wkentaro/labelme
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable transformers for end-to-end object detection. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=gZ9hCDWe6ke
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Ikuta, H., Yu, R., Matsui, Y., Aizawa, K. (2023). Towards Content-Aware Pixel-Wise Comic Panel Segmentation. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13644. Springer, Cham. https://doi.org/10.1007/978-3-031-37742-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-37742-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37741-9
Online ISBN: 978-3-031-37742-6
eBook Packages: Computer ScienceComputer Science (R0)