Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13644))

Included in the following conference series:

  • 534 Accesses

Abstract

Comic panel detection is the task of identifying panel regions from a given comic image. Many comic datasets provide the borders of the panel lines as its panel region annotations, expressed in formats such as bounding boxes. However, since such panel annotations are usually not aware of the contents of the panel, they do not capture objects that extend outside of the panels, causing such objects to be partially discarded when panels are cropped along the annotations. In such applications, a content-aware annotation that contains all of the contents in each panel is suitable. In this paper, we assess the problem of content-aware comic panel detection using two types of annotations. We first create a small dataset with bounding box annotations where each region contains the entire contents of each panel, and train a detection model. We also explore training a pixel-wise instance segmentation model using synthetic data.

H. Ikuta and R. Yu—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aizawa, K., et al.: Building a manga dataset “manga109” with annotations for multimedia applications. IEEE MultiMedia 27(2), 8–18 (2020). https://doi.org/10.1109/mmul.2020.2987895

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chen, K., et al.: MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  4. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (December 2015)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2014)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  7. Ho, A.K.N., Burie, J.C., Ogier, J.M.: Panel and speech balloon extraction from comic books. In: 2012 10th IAPR International Workshop on Document Analysis Systems, pp. 424–428. IEEE (2012)

    Google Scholar 

  8. Lee, J., Yi, J., Shin, C., Yoon, S.: Bbam: Bounding box attribution map for weakly supervised semantic and instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2643–2652 (2021)

    Google Scholar 

  9. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  10. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  11. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools Appl. 76(20), 21811–21838 (2016). https://doi.org/10.1007/s11042-016-4020-z

    Article  Google Scholar 

  12. Nguyen Nhu, V., Rigaud, C., Burie, J.C.: What do we expect from comic panel extraction? In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW). vol. 1, pp. 44–49 (2019). https://doi.org/10.1109/ICDARW.2019.00013

  13. Ogawa, T., Otsubo, A., Narita, R., Matsui, Y., Yamasaki, T., Aizawa, K.: Object detection for comics using manga109 annotations (2018). https://arxiv.org/abs/1803.08670

  14. Pang, X., Cao, Y., Lau, R.W., Chan, A.B.: A robust panel extraction method for manga. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 1125–1128 (2014)

    Google Scholar 

  15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  16. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  17. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement (2018)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  19. Wada, K.: Labelme: Image Polygonal Annotation with Python. https://doi.org/10.5281/zenodo.5711226. https://github.com/wkentaro/labelme

  20. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable transformers for end-to-end object detection. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=gZ9hCDWe6ke

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikaru Ikuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ikuta, H., Yu, R., Matsui, Y., Aizawa, K. (2023). Towards Content-Aware Pixel-Wise Comic Panel Segmentation. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13644. Springer, Cham. https://doi.org/10.1007/978-3-031-37742-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37742-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37741-9

  • Online ISBN: 978-3-031-37742-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics